

Vysoká škola báňská – Technická univerzita Ostrava

Fakulta strojní

MATEMATICKÉ SIMULACE OBJEMOVÉHO TVÁŘENÍ V PROGRAMU SIMUFACT.FORMING 9.0

Studijní opora

Jan Kedroň

Ostrava 2010

Tyto studijní materiály vznikly za finanční podpory Evropského sociálního fondu (ESF) a rozpočtu České republiky v rámci řešení projektu OP VK CZ.1.07/2.3.00/09.0147 "Vzdělávání lidských zdrojů pro rozvoj týmů ve vývoji a výzkumu".

Název:Matematické simulace objemového tváření v programu Simufact.forming 9.0Autor:Jan KedroňVydání:první, 2010Počet stran:64Náklad:5Statili (matematické simulace)

Studijní materiály pro studijní obor 2303R002 Strojírenská technologie Fakulty strojní Jazyková korektura: nebyla provedena.

Tyto studijní materiály vznikly za finanční podpory Evropského sociálního fondu a rozpočtu České republiky v rámci řešení projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Název:Vzdělávání lidských zdrojů pro rozvoj týmů ve vývoji a výzkumuČíslo:CZ.1.07/2.3.00/09.0147Realizace:Vysoká škola báňská – Technická univerzita Ostrava

© Jan Kedroň

© Vysoká škola báňská – Technická univerzita Ostrava

ISBN 978-80-248-2720-9

POKYNY KE STUDIU

Matematické simulace objemového tváření v programu Simufact.forming 9.0

Pro studium problematiky Objemového tváření jste obdrželi studijní balík obsahující:

• přístup do e-learningového portálu obsahující doplňkové animace vybraných částí kapitol

Prerekvizity

Pro studium této opory se předpokládá znalost na úrovni absolventa předmětu Technologie tváření a slévání.

Cílem učební opory

Cílem je seznámení se základními pojmy objemového tváření. Po prostudování modulu by měl student být schopen nadefinovat podmínky simulace pro objemové a plošné tváření v programu Simufact.forming 9.0.

Pro koho je předmět určen

Modul je zařazen do bakalářského studia oboru 2303R002 Strojírenská technologie studijního programu B2341 Strojírenství, ale může jej studovat i zájemce z kteréhokoliv jiného oboru, pokud splňuje požadované prerekvizity.

Skriptum se dělí na části, kapitoly, které odpovídají logickému dělení studované látky, ale nejsou stejně obsáhlé. Předpokládaná doba ke studiu kapitoly se může výrazně lišit, proto jsou velké kapitoly děleny dále na číslované podkapitoly a těm odpovídá níže popsaná struktura.

Při studiu každé kapitoly doporučujeme následující postup:

Čas ke studiu: xx hodin

Na úvod kapitoly je uveden čas potřebný k prostudování látky. Čas je orientační a může vám sloužit jako hrubé vodítko pro rozvržení studia celého předmětu či kapitoly. Někomu se čas může zdát příliš dlouhý, někomu naopak. Jsou studenti, kteří se s touto problematikou ještě nikdy nesetkali a naopak takoví, kteří již v tomto oboru mají bohaté zkušenosti.

- Cíl: Po prostudování tohoto odstavce budete umět
 - 4 Popsat ...
 - Definovat ...
 - Vyřešit ...

Ihned potom jsou uvedeny cíle, kterých máte dosáhnout po prostudování této kapitoly – konkrétní dovednosti, znalosti.

Výklad

Následuje vlastní výklad studované látky, zavedení nových pojmů, jejich vysvětlení, vše doprovázeno obrázky, tabulkami, řešenými příklady, odkazy na animace.

Shrnutí pojmů

Na závěr kapitoly jsou zopakovány hlavní pojmy, které si v ní máte osvojit. Pokud některému z nich ještě nerozumíte, vraťte se k nim ještě jednou.

Otázky

Pro ověření, že jste dobře a úplně látku kapitoly zvládli, máte k dispozici několik teoretických otázek.

Úlohy k řešení

Protože většina teoretických pojmů tohoto předmětu má bezprostřední význam a využití v praxi, jsou Vám nakonec předkládány i praktické úlohy k řešení. V nich je hlavním významem předmětu schopnost aplikovat čerstvě nabyté znalosti pro řešení reálných situací.

Klíč k řešení

Výsledky zadaných příkladů i teoretických otázek jsou uvedeny v závěru učebnice v Klíči k řešení. Používejte je až po vlastním vyřešení úloh, jen tak si samokontrolou ověříte, že jste obsah kapitoly skutečně úplně zvládli.

Úspěšné a příjemné studium s tímto učebním textem Vám přeje autor.

Jan Kedroň

OBSAH

1	C	OHŘEV	,	15
	1.1	Sestav	vení modelu	16
		1.1.1	Geometrie	16
		1.1.2	Definice okrajových podmínek	16
		•	Definice materiálu	
		•	Parametry výměny tepla	
		•	Definice senzorů	17
		•	Definice tabulky kontaktů	17
		•	Síť konečných prvků	17
		•	Další nastavení procesu	
	1.2	Spušte	ění simulace procesu a vyhodnocení	
		•	Ověření zadaných údajů	
		•	Spuštění simulace	
2	C)ŘEZ		20
	2.1	Děrov	vání (mesh tetra)	21
		•	Sestavení modelu	21
		•	Geometrie	
		•	Definice materiálu	21
		•	Definice parametrů tření	
		•	Parametry výměny tepla	
		•	Definice stroje	
		•	Ustavení nástrojů a polotovarů	
		•	Síť konečných prvků	
		•	Další nastavení procesu	
		•	Ověření zadaných údajů	
		•	Spuštění simulace procesu	
	2.2	Ořízn	utí (mesh tetra)	23
		٠	Geometrie	
		٠	Ustavení nástrojů a polotovarů	
		•	Síť konečných prvků	

		٠	Další nastavení procesu	
		•	Ověření zadaných údajů	
		•	Spuštění simulace procesu	
	2.3	Děrova	ání a ořezávaní (mesh HEX)	
		•	Síť konečných prvků	
		•	Další nastavení procesu	
		•	StageControl	
		•	Ověření zadaných údajů	
		•	Spuštění simulace procesu	
	2.4	Děrov	ání a ořezávání metodou konečných objemů "FV"	25
		•	Další nastavení procesu	
		•	StageControl	
		•	Ověření zadaných údajů	
		•	Spuštění simulace procesu	
3	Р	ĚCHOV	VÁNÍ	
	3.1	Varia	nta I – 2D	
		•	Sestavení modelu	
		•	Geometrie	
		•	Definice materiálu	
		•	Definice parametrů tření	
		•	Parametry výměny tepla	
		•	Definice stroje	
		•	Ustavení nástrojů a tvářeného materiálu	
		•	Síť konečných prvků	
		•	Parametry procesu	
		•	Ověření zadaných údajů	
		•	Start simulace	
	3.2	Varia	nta II – 3D, slMesh	
		•	Definice nové etapy procesu	
		•	Geometrie	
		•	Ustavení nástrojů a polotovarů	
		•	Síť konečných prvků	

		•	Roviny symetrie	
		•	Ověření zadaných údajů	
		٠	Start simulace	
	3.3	Variar	nta III – 3D, HexMesh	
		•	Síť konečných prvků	
		•	Ověření zadaných údajů	
		•	Start simulace	
	3.4	Variar	nta IV – 3D, HexMesh – válcové uspořádání	
		٠	Síť konečných prvků	
		•	Ověření zadaných údajů	
		•	Start simulace	
4	L	ISOVÁ	NÍ	
	4.1	Variar	nta I – bez přidržovače	
		•	Sestavení modelu	
		•	Geometrie	
		•	Geometrie nástrojů	
		•	Definice materiálu	
		•	Definice parametrů tření	
		٠	Parametry tepelné výměny	
		٠	Definice stroje	
		٠	Ustavení nástrojů a polotovarů	
		٠	Síť konečných prvků	
		٠	Parametry procesu	
		٠	Ověření zadaných údajů	
		٠	Spuštění simulace procesu	
	4.2	Variar	nta II – s přidržovačem	
		•	Definice pružiny přidržovače	
		٠	Teplota prostředí	
		•	Ustavení nástrojů a polotovarů	
		•	Síť konečných prvků	
		•	Parametry procesu	
		•	Ověření zadaných údajů	

		•	Spuštění simulace procesu	. 38
5	V	ÁLCOV	ÁNÍ KROUŽKU	. 40
	5.1	Stavba	modelu	. 41
		•	Geometrie	. 41
		٠	Definice materiálu	. 41
		•	Definice parametrů tření	. 41
		•	Parametry tepelné výměny	. 41
		•	Definice stroje	. 42
		•	Okrajové podmínky nástrojů	. 43
	5.2	Definic	e osy otáčení nástrojů	, 43
	5.3	Přiřaze	ení prvků procesu ke stromu procesu	.45
		٠	Síť konečných prvků	. 45
		٠	Zapnutí stabilizace modelu	. 46
		•	Výpočet počtu časových kroků	. 46
		•	Ověření správnosti zadaných údajů	. 46
		•	Spuštění simulace procesu	. 46
6	Р	ROTLA	ČOVÁNÍ - ECAP	. 48
		•	Sestavení modelu	. 49
		•	Geometrie	. 49
		•	Definice materiálu pro nástroje	. 49
		•	Definice materiálu polotovaru	. 50
		•	Definice stroje	. 50
		•	Definice parametrů tření	. 50
		٠	Parametry tepelné výměny	. 50
		٠	Teplota prostředí	. 51
		•	Ustavení nástrojů a polotovarů	. 51
		٠	Síť konečných prvků	. 51
		٠	Parametry procesu	. 51
		•	Ověření správnosti zadaných údajů	. 51
		•	Spuštění simulace procesu ECAP	. 51
7	K	OMBIN	IACE PROCESŮ	53
	7.1	Etapa 1	I - chlazení	. 54

	Geometrie	
	Definice materiálu	55
	Definice parametrů tření	55
	Parametry tepelné výměny	
	Definice nástrojů	
	Teplota prostředí	
	Ustavení nástrojů a polotvarů	
	Parametry procesu	
	Definice senzorů	57
	Ověření správnosti zadaných údajů	57
	Spuštění simulace procesu	57
7.2	Druhá etapa - pěchování	
	Geometrie	
	Parametry tepelné výměny	
	Ustavení nástrojů a polotovarů	
	Definice stroje	
	Definice bodů	59
	Definice dalších parametrů procesu	59
	Ověření správnosti zadaných údajů	59
	Spuštění simulace procesu	59
7.3	Třetí etapa - pěchování	60
	Geometrie	60
	• Parametry materiálu, tření a teploty	60
	Definice bodů	60
	Definice zbývajících parametrů procesu	60
	Ověření správnosti zadaných údajů	61
	Spuštění simulace procesu	61
7.4	Čtvrtá etapa – zápustkové kování	61
	Geometrie	61
	Parametry materiálu, tření a teploty	61
	Definice bodů	61
	Definice zbývajících parametrů procesu	

•	Ověření správnosti zadaných údajů	62
•	Spuštění simulace procesu	62

Průvodce studiem

Důvody pro využívání počítačové simulace

Simulací lze řešit i velmi složité technologické operace, které jsou neřešitelné nebo obtížně řešitelné analytickými metodami, popř. kde by použití analytického řešení bylo příliš zjednodušující. Pomocí simulace je rovněž možné prověřit výsledky docílené jinými metodami z hlediska experimentů nebo výsledků z praxe.

Simulace umožňuje studium chování tvářeného materiálu v reálném, zrychleném nebo zpomaleném čase. Po zhotovení geometrického modelu a provedení simulačního výpočtu lze pak během několika minut nasimulovat průběh celé technologické operace. Již samotné zkušenosti z tvorby simulačního modelu mohou vést k návrhům na zlepšení geometrie či materiálu. Vytvoření simulačního modelu totiž není možné bez důkladné analýzy zkoumaného problému, která může odhalit v samém začátku zpracování zadání značné rezervy.

Simulace nabízí komplexní pohled na studovaný problém a umožňuje tak jeho analýzu na základě více kritérií. Změnou jednoho konstrukčně - technologického parametru lze sledovat jeho vliv jak na chování tvářeného materiálu, tak na průběh technologické operace tváření i na případné vady produktu. Pomocí simulace je možné důkladně prověřit různé varianty řešení. To umožňuje minimalizovat rizika chybných rozhodnutí.

Představení firmy Simufact

EC Engineering nabízí produkty světového lídra v oblasti simulačních řešení – firmy Simufact (někdejší Femutec).

Simufact.forming je program, který vyvinula firma Simufact sloučením programů MSC.SuperForge a MSC.Super.Form – sloužících pro simulaci tvářecích procesů.

Simufact je zaměřený na požadavky průmyslu svázaného s tvářecími procesy. Vývoj programu byl zadán skupině specialistů, kteří pracují v oboru objemového tváření.

Program dovoluje simulaci všech procesů tváření, např.:

- Zápustkové a volné kování (za studena i za tepla),
- Válcování,
- Protlačování,
- Ohýbání,
- Stříhání,
- Chlazení,
- Vytlačování,
- Analýza nástrojů.

Díky použití nové, v této oblasti výpočtů, metody konečného objemu, byl zkrácen čas výpočtů asi desetkrát ve srovnání se stejnou analýzou, která využívá metodu konečných prvků. Obě dvě výpočtové metody jsou dostupné v Simufact.forming 9.0.

Simufact.forming 9.0 dovoluje jednoduché a rychlé definování elementů a parametrů procesu, jako jsou:

• stroje,

- buchary,
- hydraulické lisy,
- klikové lisy,
- výstředníkové lisy,
- a jiné,
- parametry tření,
- parametry výměny tepla,
- parametry přestavby sítě (remeshing),
- razníky, přítlaky,
- materiálové parametry,
- a mnoho dalších.

Do programu bylo zaimplementováno mnoho řešení dovolujících např. automatické sledování záložek, sledování toku materiálu, simulace odpružení nebo analýzu nářadí.

Simufact.material

Dodatečná základna nabízí rozšířené materiálové parametry nezbytné při simulacích případů svázaných s předpovědí velikosti zrna nebo fázového rozkladu v hotovém výrobku.

Simufact.project

Veliké množství údajů vyprodukovaných prostřednictvím simulačního procesu vyžaduje archivační nástroj, který by byl dostatečně vypovídající a přehledný. Pomocí Simufact.projectu můžou být údaje lehce organizovány, administrovány a ukládány.

Výhody vyplývající ze zavedení Simufact.forming 9.0:

- redukce nákladů pomocí rychlejšího a efektivnějšího procesu zavedení nové technologie,
- zvětšení stability procesů,
- virtuální přezkoušení správného tvaru nástrojů a parametrů procesu,
- zvětšená životnost nástrojů,
- lepší využití strojů,
- rozšíření oblasti nabízených výrobků výroba složitějších detailů.

Hlavní vlastnosti Simufact.forming 9.0:

- jednoduché, intuiční uživatelské rozhraní,
- jediný produkt na trhu, který spojuje výhody solveru typu explicit a implicit,
- řešení pro optimalizaci procesů jak také pro složité analýzy a pro využití v oblasti výzkumu a vývoje,
- nástroj pro simulaci všech procesů tváření zápustkové a volné kování, za tepla i za studena, tvarování plechů, válcování, mechanické spojování a mnoho dalších.

1 OHŘEV

Níže uvedený příklad ukazuje proces ohřívání polotovaru prostřednictvím jiného prvku. Díky této konfiguraci lze jednoduchým způsobem simulovat částečné ohřívání součásti nebo indukční ohřívání.

Řešený příklad

1.1 Sestavení modelu

Nový projekt se definuje pomocí ikonky v levém horním rohu obrazovky.

Typ procesu vybíráme Heating.

New \rightarrow Process Properties \rightarrow Heating \rightarrow Hot, 2D, $FE \rightarrow OK$

Uložíme vytvořený projekt:

Save project as $\rightarrow \dots$

1.1.1 Geometrie

Geometrii jednoduchých prvků lze definovat bezprostředně v programu funkcí AutoShape:

Insert \rightarrow Model \rightarrow Auto Shape \rightarrow Cylinder \rightarrow R = 50 mm, L = 400 mm

Insert \rightarrow Model \rightarrow Auto Shape \rightarrow Pipe \rightarrow R OUT = 60 mm, R IN = 52.5 mm, L = 100 mm

1.1.2 Definice okrajových podmínek

↓ Definice materiálu

Materiál vybíráme ze základní databáze programu:

Material \rightarrow Library \rightarrow Steel \rightarrow DIN 1.3505

♣ Parametry výměny tepla

Definujeme parametry výměny tepla a počáteční teploty nástrojů a polotovaru.

Počáteční teplota 1250°C

Heat \rightarrow *Die* \rightarrow *Manual* \rightarrow

Součinitel tepelné výměny s prostředím 50 W/(m2*K)

Součinitel tepelné výměny s tvářeným materiálem 70000 W/(m2*K)

Sálání do prostředí 0.25

Model	•		
Material			
Press			
Friction			
Heat	•	Die	Manual
Remesh	•	WorkPiece	 Library
DicType	- 1		
Boundary conditio	n 🕨		
Cut plane	- 1		
Remove unused			
🕫 1 250 ds			
* **	Initia	Die Temperature	
<u> </u>	125) Da	laina 💌
Die 🔣	Heat	Transfer Coefficie	ant to Ambient
	20	164	alt/(m2%)
(wp)	Heat	Transfer Coefficie	ent to Workpiece
\sim	700	30 W.	alt/[m2%]
	Emis	sivity for Heat Bar	tiation to émbient
	0.25		ID-11
	20.04		1

|--|

Backward Extrusion Gear Forming Open Die		Suggested solver
- Bending - Railing - Ring Rolling Sheet Forming - with Yoburas Elements - with Solid Shel Elements Heat treatment	Dies (press driven) Quantity	Name prelix
Cooing Heating	1	UpperDie

New Project

Forging Hot

C Cold

C 3D

Heat → Workpiece → Manual → Počáteční teplota 20°C Součinitel tepelné výměny s prostředím 50 W/(m2*K) Sálání do prostředí 0.25

👃 Definice senzorů

Kontrolní body naložené na tvářenou součást dovolují pozorovat změny parametrů stavu. Pro jejich nadefinování je zapotřebí:

Kliknou pravým tlačítkem myši na Workpiece \rightarrow Insert Particles \rightarrow Planes

 Definice tabulky kontaktů

Pro nadefinování tabulky kontaktů v procesu FE klikneme na:

Insert \rightarrow FE Contact Table

Vybereme

Workpiece \rightarrow Has contact with: vybereme nástroj \rightarrow Near contact tolerance \rightarrow 10 mm

t dovolu inování	ují je	An CC	Copy Rename Delete Translate Algn BoundingBo Positioning Export Die Stress Die Stress Simula Export	X Ale	sods so mesh1 inder e , mesh2		
t Particl	es		Insert Particles		• Plane	is	
			Properties		Surfa	ace Lines	
					Noor	-Surface Line	s
					Edge	s	
					Cent	er Line	
					une.		
					Surfa	sce Points	
	L						
	L						
1.10							
1300	has contact with		Contact option		First In service	4	
time Multiplece	has contact with		Contast option Direction Contect type		First to second	4	× ×
tavo diciolifika ce	has contact with	etny	Contact sption Direction Contact type Contact tolerance		Pinst to second Touching 0	1	2 ×
tike John Piere	hae contact with Contact with Verifieste Assetsymme	έŋγ	Contact action Direction Contact type Contact these Contact bias fector		Past to second Rouching 0	t International International Internationa International International I	× ×
tino J dicidifierce	hae contact with I according to Viceforese Viceforese Viceforese Viceforese	torγ	Contact action Direction Contact type Contact bias fector (r) Near contact b	olerance	Prest to second Touching 0 0 10	j 	× ×
tive doublingere	has contact with	torγ	Contact option Direction Contact type Contact to enforce Contact the factor (V) Rear contact to Michaelical propertie	olerance	Pret to second Touching 0 0 10	i nı	v v
the July Pre	has contact with Convertient Ausbigumme	τογ	Contact action Direction Contact type Contact bias fector Contact bias fector Placements of propertie Separation at	olerance 5	First to second fourhing 0 10	1 nı nı	
100 J J J J J J J J J J J J J J J J J J	has contact with	807y	Contact action Direction Contact type Contact bios facto Contact bios facto Contact bios facto Contact bios facto Contact bios facto Contact bios Factorization at Proclam stress limit	olerance 0 1e+14	Pinst to second Fourhing 0 10	d nı nı MPa S	
tie j abditete	har contact + H Contact + H Contract AddSymme	θCry	Contact aption Direction Contact type Contact thes factor Contact thes factor Phenomenal these Phenomenal type Phenomenal type	olerance 5 80+14	Pirst to second Touching 0 10	d nu MPa S	
tio Judifere	Ne colst elle	807y	Contact aplica Decision Contact type Contact the forecase Rear contact the Separation of Protomal properties Separation of Protomal properties Interference of Interference of Interference of	olerance 5 10-114 rosure [Pirst to second Exaching 0 10	d nı MP5 Y SP2 Y	
100 J J J J J J J J J J J J J J J J J J	Nat contact with	ecry	Center tector Decision Center three Center three Center three Plectorer of propertie Secondary of Plectorer of propertie Secondary of Plectorer of propertie Secondary of the Plectorer of the Plectorer of Plectorer of the Plectorer of Plectorer of the Plectorer of the Plectorer of the Plectorer of the Plectorer of the Plectorer of the Plectorer of the Plectorer of the Plectorer of the Plectorer of the Plectorer of the Plectorer of the Plectorer of the Plectorer	olerance 5 10-114 10-114	Pret to second Fourhing 0 0 10	d nı MPa V MPa V	
tin j dodrete	has contact with	θαγ	Contact solon Direction Contact trans Contact them feator Contact them feator Contact them feator Contact them feator Predom feator Predom feator Contact the solonor Contact the solonor	olerance 1 1e+14 ssure [Prest to second fourhing 0 10	d na MPo V NO	
100 John Pere	Nac contact with	tory	Contact solar Decision Contact tolerance Contact tolerance Contact tolerance Contact tolerance Contact tolerance Contact tolerance Preservation Separation of Preservation Separation of Overlage	olerance 5 1e+14 ssure [Presto secono fouching 0 10	d nu nu MPa nu nu	

0

Press Frittic

DieType

Boundary Out plane

Po přidání všech prvků procesu vypadá okno objektů takto.

 Síť konečných prvků

Pro vytvoření sítě klikneme na ikonu mesh we stromě procesu.

Mesh \rightarrow Create new mesh $\square \rightarrow$ Close

4 Další nastavení procesu

Klikneme na Menu Heating a definujeme vhodný počet kroků procesu a dobu ochlazování.

Endic settings Output Divisions Output Divisions Output Results Advanced Sep control Solver Contact/Release Friction Option Symmetry Decelel	Wolkpiece propettes Element size Analysis type Perform analysis with using the Heat tooamont	7.59846830317 20, Axisymmetric Raads (10) Advancing Front Quad	ram elements mesher
	Total line	100	2EC
Basic settings - Dutput Divisions - Dutput Results - Advanced - Advanced - Solver - Concast/Release - Frition - Option - Symmitry - Parolel	Mode Fixed time step Adaptive time : Adaptive time : Temperature b Fixed deploses Number of steps Automatio Fixed deploses Manual	4 cteps ascein [105 asce] [105 asce] [105 [105 [106]	(0:1) (Celsius) mm

1.2 Spuštění simulace procesu a vyhodnocení

 Ověření zadaných údajů

Check data \rightarrow OK

4 Spuštění simulace

Spustíme tlačítkem vykřičníku:

RUN

Po ukončení simulace (a také v jejím průběhu) si můžeme prohlédnout výsledky simulace pomocí příkazového řádku "Result Bar"

Forming None 100.00% (Model)	💌 ProcessTime % 💌 📮 🗶 🛐 🛍 📖
------------------------------	-----------------------------

Postprocessing

- Animation
- Result plot
- Time history graph

Možnosti zobrazování modelu:

- průzračný
- s sítí
- obrysový
- vypnutý
- stínovaný

Shrnutí pojmů 1.1.

Jednoduchým způsobem lze simulovat částečné ohřívání součásti nebo indukční ohřívání.

Nový projekt

Geometrie

Definice okrajových podmínek

Spuštění simulace

Vyhodnocení simulace

Otázky 1.1.

- 1. Co lze simulovat v programu Simufact.forming 9.0?
- 2. Jaký typ procesu vybíráme při ohřevu?
- 3. Jaké definujeme okrajové podmínky?
- 4. Můžeme v průběhu simulace prohlížet její výsledky?

2 OŘEZ

Cílem příkladu je ukázání možnosti děrování a ostřihování (ořezávání). Možnosti budou představeny na příkladech, ve kterých budou využity různé druhy sítě konečných prvků a různé výpočtové metody.

Cíl: Po prostudování tohoto odstavce budete umět

- Sestavit model ořezávání pomocí metody FE, FV.
- Definovat okrajové podmínky simulace.
- **4** Rozdíl v modulech SLMESH, OVERLAY HEX.
- Vyřešit příklady týkající se ořezu polotovaru, ostřihávání či děrování polotovaru.

21

2.1 Děrování (Mesh tetra)

\rm Sestavení modelu

Nový projekt se definuje pomocí ikonky v levém horním rohu obrazovky

Typ procesu vybíráme Trimming.

New \rightarrow Process Properties \rightarrow Trimming \rightarrow Cold, 3D, FE \rightarrow OK

Uložíme vytvořený projekt: Save project as \rightarrow ...

🖊 Geometrie

V příkladech využijeme jednoduchou geometrii vytvořenou v programu:

- kvádr s rozměry 50x50x10 mm

Insert \rightarrow Model \rightarrow Autoshape \rightarrow Cube shape $\rightarrow X=50$, Y=50, Z=10 $\rightarrow OK$

- válec s průměrem 30 mm a výškou 50 mm

Insert \rightarrow Model \rightarrow Autoshape \rightarrow Cylinder shape $\rightarrow R=15$, H=50 \rightarrow OK

\rm Definice materiálu

Materiál vybíráme ze základní databáze programu:

 $Material \rightarrow Library \rightarrow Steel \rightarrow DIN_{1.1231}$

4 Definice parametrů tření

Není

Туре:
Bulk Forming Uppetting Closed Die Hommer Forwerd Exturion Gear Forming Open Die Bendrig Poling Foling Foling Sheet Forming Sheet Forming Witscellameous Cooling Heating Miscellameous Dies (press driven) Quertity Timming
AutoShana
Auto shape type : Eube shape
Shape Size
H Width (X): 50
Depth (Y) : 50
Heidt (2)
Enforce few elements
the state of the s
Length Link: Imitmeter
OK Cancel
AutoShane
Auto shape type : Cyinder shape 💌
Shape Size
Hadus: 15
Height: 50
Angle(0-360): 0
Length unit : milimeter
OK Cancel

♣ Parametry výměny tepla

Definujeme parametry výměny tepla a počáteční teploty nástrojů a polotovaru.

 $\textit{Heat} \rightarrow \textit{Die} \rightarrow \textit{Manual} \rightarrow$

Počáteční teplota 20°C

Součinitel tepelné výměny s prostředím 50 W/(m2*K)

Součinitel tepelné výměny s tvářeným materiálem 20000 W/(m2*K) Sálání do prostředí 0.25

Heat → Workpiece → Manual → Počáteční teplota 20°C Součinitel tepelné výměny s prostředím 50 W/(m2*K) Sálání do prostředí 0.25

Ustavení nástrojů a polotovarů

Přiřadíme geometrii a další potřebné údaje ke stromu, a následně je ustavíme.
→ Otočíme tak, aby osa "z" byla svislou osou. Vystředění nástroje vůči výstřižku provedeme funkcí "Save current position". Válec by měl být ve středu kvádru a nad kvádrem.

 Síť konečných prvků

Pro vytvoření sítě klikneme na ikonu mesh \longrightarrow we stromě procesu. Síť naložíme modulem Slmesh tetra: $3mm \rightarrow$ element size to process \rightarrow close

Fakulta strojní, VŠB-TU Ostrava

Press Plot History					
	Pieze Type	Hydraulic Pres	8	۲	
Ē	Regrie Glav Dave Wild Velacity(VS) Encl/Accity(VS)	0 0	m/sec m/sec	y y	
	Regular Speed				
1	Velooig(V)	100	minuliero	•	

23

4 Další nastavení procesu

Definujeme libovolné nenulové posunutí (skok).

V menu "Substages" zvolíme automatické vymazání nástroje po procesu.

♣ Ověření zadaných údajů

Check data \rightarrow OK

Spuštění simulace procesu

RUN

2.2 Oříznutí (Mesh tetra)

V této variantě procesu využijeme model z předchozí simulace.

Zkopírujeme předchozí proces bez výsledků.

Process \rightarrow *Copy* \rightarrow *Copy without Results*

🖊 Geometrie

Vytvoříme trubku - výška 50 mm, vnitřní průměr 30 mm a vnější průměr 80 mm

Insert \rightarrow Model \rightarrow Autoshape \rightarrow Pipe shape $\rightarrow R2=80$, r1=30, H=50 $\rightarrow OK$

Změníme geometrii nástroje na trubku.

AutoShape		×
Auto shape typ	e : Fipe shape	•
Shape 5ize-	Radus2(0 ut) : [80 Radus1(In) : [30	
	Angle(0-360): D	
	Length unit : millmeter	<u> </u>

Collapse Al

Show Mesh.. Open Explor

Insert Increase Dies/WPs by Pre Window... γ without Res

↓ Ustavení nástrojů a polotovarů

Ustavení provedeme tak aby, se trubka nacházela ve středu kvádru a nad ním.

4 Síť konečných prvků

Pro vytvoření sítě klikneme na ikonu mesh \longrightarrow we stromě procesu. Síť naložíme modulem Slmesh tetra: $3mm \rightarrow element size to process \rightarrow close$

24

♣ Další nastavení procesu

Definujeme libovolné nenulové posunutí (skok).

V menu "Substages" zvolíme automatické vymazání nástroje po procesu.

 Uvěření zadaných údajů

Check data \rightarrow OK

♣ Spuštění simulace procesu

RUN

2.3 Děrování a ořezávaní (Mesh HEX)

Zkopírujeme dva procesy bez výsledků *Process* \rightarrow *Copy* \rightarrow *Copy without Results*

4 Síť konečných prvků

V obou dvou procesech naložíme síť s velikosti prvku 3 mm – Overlay hex Modul Overlay hex: $3mm \rightarrow element \ size \ to \ process \rightarrow close$

♣ Další nastavení procesu

Definujeme libovolné nenulové posunutí (skok).

V menu "Substages" zvolíme automatické vymazání nástroje po procesu.

StageControl

StageControl přidáme tak, že pravým tlačítkem myši klikneme v okně stromu procesu a vybereme "Insert StageControl". K novému StageControl přidáme předchozí procesy.

Kliknutím na druhou položku v StageControl a odznačením políčka při Workpiece upravíme procesy tak, aby nebyly na sobě závislé.

♣ Ověření zadaných údajů

Check data \rightarrow OK

♣ Spuštění simulace procesu

RUN

2.4 Děrování a ořezávání metodou konečných objemů "FV"

Zkopírujeme dva předchozí procesy.

Klikneme dvojklikem na název každého procesu a změníme jeho vlastnosti na výpočty metodou FV.

4 Další nastavení procesu

Definujeme libovolné nenulové posunutí (skok).

V menu "Substages" zvolíme automatické vymazání nástroje po procesu.

StageControl

StageControl přidáme tak, že pravým tlačítkem myši klikneme v okně stromu procesu a vybereme "Insert StageControl". K novému StageControl přidáme předchozí procesy.

Kliknutím na druhou položku v StageControl a odznačením políčka při Workpiece upravíme procesy tak, aby nebyly na sobě závislé.

♣ Ověření zadaných údajů

Check data \rightarrow OK

♣ Spuštění simulace procesu

RUN

Shrnutí pojmů 2.1.

Jednoduchým způsobem lze simulovat děrování, vystřihování, ostřihování nebo ořezávání.

metody FE, FV moduly SLMESH tetra, OVERLAY HEX StageControl 25

Otázky 2.1.

- 5. K čemu slouží proces Trimming?
- 6. Jaké typy metod používáme pro Trimming?
- 7. Jaké typy modulů používáme pro Trimming?
- 8. Jak přidáme StageControl do stromu procesu?

3 PĚCHOVÁNÍ

Cílem příkladu je namodelování procesu pěchování. Simulace bude provedena v několika variantách – 2D a 3D s využitím různých sítí konečných prvků.

Čas ke studiu: 45 minut

Cíl: Po prostudování tohoto odstavce budete umět

- ↓ Varianta I 2D.
- ↓ Varianta II 3D, SlMesh.
- ↓ Varianta III 3D, HexMesh.
- Vyřešit příklady týkající se pěchování materiálu.

3.1 Varianta I – 2D

\rm Sestavení modelu

Vytvoříme nový projekt. Typ procesu vybíráme pěchování.

New \rightarrow Process Properties \rightarrow Upsetting \rightarrow Hot, 2D, FE \rightarrow OK

První proces definujeme pomocí ikonky v levém horním rohu obrazovky.

Další etapy procesu můžeme vkládat pomoci příkazového menu:

Insert \rightarrow Process

nebo kliknout pravým tlačítkem myši v okně stromu procesu a vybrat Insert Process.

Vybereme parametry:

- 2D - dvourozměrná simulace

- FE – metoda konečných prvků

- Hot – proces za tepla

Uložíme vytvořený projekt Save project as → Pěchování 2D

\rm Geometrie

Geometrii můžeme do procesu vkládat pomocí:

příkazového menu Insert \rightarrow Model \rightarrow ...

nebo

pravým tlačítkem myši v okně objektů Model → ...

Jednoduchá tělesa můžeme vkládat pomocí funkce AutoShape.

Vkládáme:

Model \rightarrow	Auto Shape \rightarrow	cylinder \rightarrow	$R = 50, H = 30 \rightarrow$	HorniZapustka
$Model \rightarrow$	Auto Shape \rightarrow	cylinder $ ightarrow$	$R = 50, H = 30 \rightarrow$	DolniZapustka
$Model \rightarrow$	Auto Shape \rightarrow	cylinder \rightarrow	$R = 30, H = 60 \rightarrow$	Polotovar

V okně objektů se ukazují nové prvky. Pokud na ně dvakrát klikneme, můžeme se podívat na jejich geometrii a vlastnosti.

Definice materiálu

Materiál můžeme nadefinovat třemi způsoby:

Manuálně

Pomocí knihovny Simufact.Forming

Pomocí knihovny Matilda

Material \rightarrow *Library* \rightarrow *Stal: AISI 1015 (T=800-1200C)*

🖊 Definice parametrů tření

Volíme model podle Trescy.

Friction \rightarrow *Manual* \rightarrow *Plastic Shear Friction* \rightarrow 0.4

♣ Parametry výměny tepla

V tomto kroku definujeme parametry výměny tepla a počáteční teploty nástrojů a polotovaru.

Heat \rightarrow *Die* \rightarrow *Manual* \rightarrow *a postupně zadáváme*

- o Počáteční teplota 250°C
- Součinitel tepelné výměny s prostředím 50 W/(m2*K)
- Součinitel tepelné výměny s tvářeným materiálem 6000 W/(m2*K)
- o Sálání do prostředí 0.25

Heat \rightarrow *Workpiece* \rightarrow *Manual* \rightarrow *a postupně zadáváme 1100, 50, 0.25*

\rm Definice stroje

 $Press \rightarrow Manual \rightarrow Hydraulic press \rightarrow 100 \text{ mm/s} \rightarrow HydralulickyLis$

Teplota prostředí: 50°C

SEE Friction	
Type of Friction	
Plastic Shear Friction Interfece friction factor	1.4
OK	Cancel

Ustavení nástrojů a tvářeného materiálu

Před ustavením nástrojů a polotvarů je musíme přiřadit do stromu procesu. Provedeme to přetažením zvolených objektů na vhodné místo ve stromě.

Při ustavování používáme funkci "AlignBoundingBox"

Nastavení osy symetrie

Abychom mohli provést dvourozměrnou osově-symetrickou simulaci, musíme definovat polohu osy symetrie a poloroviny symetrie.

♣ Síť konečných prvků

Mesh \rightarrow Element size: 2 mm \rightarrow Create New Mesh \square \rightarrow Element Size to process \rightarrow Close

♣ Parametry procesu

Pro definování ostatních parametrů procesu používáme menu "Forming".

Forming \rightarrow Stroke: 15 mm \rightarrow Start

Ověření zadaných údajů

Check data \rightarrow OK

♣ Start simulace

RUN

3.2 Varianta II – 3D, slMesh

Simulace procesu pěchování – 3D s využitím modulu slMesh.

4 Definice nové etapy procesu

Process \rightarrow *Insert process* \rightarrow *Hot, 3D, FE*

↓ Geometrie

 $Model \rightarrow Auto Shape \rightarrow Cylinder \rightarrow R = 30, H = 60, Angle = 90 \rightarrow PolotovarCw$

31

4 Ustavení nástrojů a polotovarů

Přiřadíme prvky ke stromu procesu.

Ustavení nástrojů a polotovarů → AlignBoundingBox

4 Síť konečných prvků

 $Mesh \rightarrow Element \ size: 3 \ mm \ (slMesh) \rightarrow Create \ New \ Mesh \ \blacksquare \rightarrow Element \ Size \ to \ process \rightarrow Close$

4 Roviny symetrie

Protože je tvářená součást symetrická, definujeme vhodné roviny:

Insert \rightarrow *symmetry plane*

Definice zbývajících parametrů procesu.

Forming \rightarrow Stroke: 15 mm \rightarrow Start

 Ověření zadaných údajů

Check data \rightarrow OK

♣ Start simulace

RUN

3.3 Varianta III – 3D, HexMesh

Protože struktura této varianty je stejná s předchozím procesem, nemusíme znovu definovat všechny parametry, ale můžeme využít možnost kopírování procesu.

Zkopírujeme předchozí proces bez výsledků.

Process \rightarrow *Copy* \rightarrow *Copy without Results*

Rename	<u>e</u>
Capy 🕨	Copy without Results
Delete Collapse Al	Copy with results
Insert Increase Dies/WPs by	
Pre Window Show Mesh Open Explorer	
Simulation 🕨	
Properties	

4 Síť konečných prvků

Jediný rozdíl oproti předchozí etapě je v jiném druhu konečných prvků, proto vejdeme do menu "Mesh" hesh a vybereme mesher "Overlay Hex".

Pěchování

 Ověření zadaných údajů

Check data \rightarrow OK

Start simulace

RUN

3.4 Varianta IV – 3D, HexMesh – válcové uspořádání

Struktura této varianty je shodná s předchozí, můžeme tedy zkopírovat proces bez výsledků.

Zkopírujeme předchozí proces bez výsledků.

Process \rightarrow *Copy* \rightarrow *Copy without Results*

Síť konečných prvků

Vejdeme do menu "Mesh" Mesh v záložce "Advanced" vybereme typ sítě "Cylindrical".

Ověření zadaných údajů

Check data \rightarrow OK

4 Start simulace

RUN

Jednoduchým způsobem lze simulovat pěchování polotovaru.

metoda FE Varianta I – 2D Varianta II – 3D, SlMesh Varianta III – 3D, HexMesh Varianta IV – 3D, HexMesh – válcové uspořádání

Otázky 3.1.

- 9. Jaký typ procesu vybíráme při pěchování?
- 10. Jakou metodou simulujeme pěchování?
- 11. Kolik variant pěchování polotovaru můžeme nasimulovat?
- 12. Můžeme použít typ sítě "Cylindrical" při druhu konečných prvků HexMesh?

4 LISOVÁNÍ

Cílem příkladu je namodelování procesu lisování plechu ve dvou variantách: bez přidržovače a s přidržovačem.

Fakulta strojní, VŠB-TU Ostrava

Výklad

4.1 Varianta I – bez přidržovače

\rm Sestavení modelu

Nový projekt definujeme pomocí ikonky v levém horním rohu obrazovky

Typ procesu vybíráme Forward Extrusion.

New \rightarrow Process Properties \rightarrow Forward Extrusion \rightarrow Cold, 3D, FE \rightarrow OK

Uložíme vytvořený projekt:

Save project as \rightarrow ...

 Geometrie

Geometrii polotovaru definujeme:

Insert \rightarrow Model \rightarrow Autoshape \rightarrow Cylinder $\rightarrow R=31$, H=0.8, Angle=90 \rightarrow Lenght unit=mm $\rightarrow OK$

nebo

pravým tlačítkem myši v okně objektů:

 $Model \rightarrow Autoshape \rightarrow \dots$

\rm Geometrie nástrojů

Geometrie nástrojů byly připraveny jako soubory *.igs a můžou být vložené do procesu přes:

Insert \rightarrow Model \rightarrow CAD preview \rightarrow importujeme celou sestavu (Zl_ETAP.igs)=sag=0.1

Definice materiálu

Definujeme nový materiál:

 $Material \rightarrow Manual \rightarrow zadáváme parametry:$

Bulk Forming

Upsetting

Closed Die Hammer

Forward Extrusion Blackward Extrusion

Gear Forming Open Die Rending

Model	۲	
Material	۰	Manual
Press	۲	Library
Friction	۲	From MatILDa
Heat	۲	
Remesh	۲	
DieType	۲	
Boundary condition	۲	
Cut plane	۲	
Remove unused		

-elastic: E = 210000 MPa, v = 0.3, hustota = 7850 kg/m3, vodivost = 45 W/m/K, měrná teplota = 420 J/kg/K

-plastic: S = 227 MPa, C = 524 MPa, N = 0.219, práce přeměněná na teplo – nedůležité, dilatace = 1.5e-5 1/C, referenční teplota 20° C

+ Definice parametrů tření

Postupně definujeme tři různé koeficienty tření. Volíme model podle Trescy.

Friction \rightarrow Manual \rightarrow Mix: Coulomb: 0.05; Tresca: 0.2 \rightarrow mix005

♣ Parametry tepelné výměny

Definujeme parametry výměny tepla a počáteční teploty nástrojů a polotovaru.

$\mathit{Heat} \rightarrow \mathit{Die} \rightarrow \mathit{Manual} \rightarrow$

Počáteční teplota 20°C

Součinitel tepelné výměny s prostředím 50 W/(m2*K)

Součinitel tepelné výměny s tvářeným materiálem 20000 $W/(m2^{\ast}K)$

Sálání do prostředí 0.25

Heat → Workpiece → Manual → Počáteční teplota 20°C Součinitel tepelné výměny s prostředím 50 W/(m2*K) Sálání do prostředí 0.25

Teplota prostředí

Strom procesů \rightarrow

 \rightarrow 20°C

🖊 Definice stroje

Press \rightarrow Manual \rightarrow Hydraulic \rightarrow 100 mm/s

see Friction		×
Type of Friction		
Coulomb Friction Static friction coefficient ((0.0 - 0.5)	0.05	
Plastic Shear Friction Interface friction lactor (m) [0 - 1]	0.2	

Model	۲			
Material	۲			
Press	۲			
Friction	×			
Heat	•	Die	١	Manual
Remesh	•	WorkPiece	۲	Library
DicType	×			
Boundary condition	×			
Cut plane	٠			
Remove unused				

	ΕN
e Silver Daven-	Regular Slow Down-
elas é.(V3)	hind Value (VS)
(ret)(2) 0 mises y	EndVelocity(VE)
vecond v	Term
r Speed	Regular Speed
na 100 mm/sec •	VelooitalVI
(cct)(/) 0 m/sec #	End Velocity (VE) Time Regular Speed

37

4 Ustavení nástrojů a polotovarů

Nástroje a polotvary přiřadíme do stromu a následně ustavíme \rightarrow a otočíme tak, aby osa "z" byla svislou osou. Pro vycentrování nástrojů vůči výstřižku využijeme funkci "Save current position".

Protože provádíme simulace pouze čtvrtiny výstřižku, musíme zvolit vhodné roviny symetrie.

 Síť konečných prvků

Pro vytvoření sítě klikneme na ikonu mesh ve stromě procesu.

Síť naložíme modulem Sheetmesh: 0.6 mm, 4 prvky na tloušťku \rightarrow element size to process \rightarrow close

♣ Parametry procesu

Forming \rightarrow Stroke \rightarrow 20 mm

4 Ověření zadaných údajů

Check data \rightarrow OK

Spuštění simulace procesu

RUN

4.2 Varianta II – s přidržovačem

V tomto procesu využijeme strukturu s předcházející etapy.

Zkopírujeme předchozí proces bez výsledků a přidáme další nástroj – přidržovač

Process \rightarrow *Copy* \rightarrow *Copy without Results*

Definice pružiny přidržovače

Die type → Die spring → Manual Tuhost: 1 N/mm; Počáteční síla: 975 N;

Lisování

Směr: -Z;	Siiffnes: 1 Newton/mm
Displacement: 1.6 mm;	Initial force F (*) 975 Newton
Initial condition: compressed	
	Displacement 1.6 milimeter
Tanlata prostředí	Initial condition - The spring is
+ Teplota prostredi	Teleaseu se pompresseuby the giver maximum displacement.
Strom procesů \rightarrow \rightarrow 20°C	
4 Ustavení nástrojů a polotovarů	
Přidržovač ustavíme tak, aby byl 0.8 mm na	d přístřihem.
 Siť konečných prvků 	
Pro vytvoření sítě klikneme na ikonu mesh	Mesh ve stromě procesu.
Síť naložíme modulem Sheetmesh: 0.6 mm, 4 prvk	zy na tloušťku → element size to process
\rightarrow close	
Parametry procesu	
♣ Parametry procesu Forming → Stroke → 20 mm	
↓ Parametry procesu Forming → Stroke → 20 mm	
♣ Parametry procesu Forming → Stroke → 20 mm	
 ↓ Parametry procesu <i>Forming</i> → Stroke → 20 mm ↓ Ověření zadaných údajů 	
 ↓ Parametry procesu Forming → Stroke → 20 mm ↓ Ověření zadaných údajů Check data → OK 	
 ↓ Parametry procesu Forming → Stroke → 20 mm ↓ Ověření zadaných údajů Check data → OK 	
 ↓ Parametry procesu <i>Forming</i> → Stroke → 20 mm ↓ Ověření zadaných údajů <i>Check data</i> → OK ↓ Spuštění simulace procesu 	
 ↓ Parametry procesu Forming → Stroke → 20 mm ↓ Ověření zadaných údajů Check data → OK ↓ Spuštění simulace procesu RUN 	

Shrnutí pojmů 4.1.

Jednoduchým způsobem pomocí programu Simufact.forming lze simulovat lisování plechu.

Varianta s přidržovačem

Varianta bez přidržovače

Vlastní definice materiálu

metoda FE – modul Sheetmesh

Definice pružiny přidržovače

Otázky 4.1.

- 13. Jaký typ procesu vybíráme při lisování?
- 14. Jakou síť konečných prvků nanášíme na plech při lisování plechů?
- 15. Jaké varianty lisování plechu můžeme nasimulovat?
- 16. Jak nadefinujeme pružinu přidržovače?

5 VÁLCOVÁNÍ KROUŽKU

Základem procesu je tváření kroužků s využitím vnějšího hnaného tvářecího válce a volně se otáčejícího vnitřního válce. Ke tvářenému kroužku jsou dotlačované přidržující válce a boční válec.

Řešený příklad

5.1 Stavba modelu

Nový projekt definujeme pomocí ikonky v levém horním rohu obrazovky

Typ procesu vybíráme Ring Rolling.

 $New \rightarrow Process Properties \rightarrow Ring Rolling \rightarrow Cold, 3D, FE \rightarrow OK$ Uložíme vytvořený projekt: Save project as $\rightarrow \dots$

🖊 Geometrie

Geometrie nástrojů byly připraveny jako soubory *.stl a můžou být vložené do procesu:

Model Materia

Press

Friction Heat

Remesh DieType Boundary condition

Cut plane Remove unused Manual... Library...

From Mat ILDa.

Insert \rightarrow Model \rightarrow From file \rightarrow vybíráme všechny soubory *.stl ze složky

nebo

pravým tlačítkem myši v okně objektů:

Model→ From file→ vybíráme všechny soubory *.stl ze složky

\rm Definice materiálu

Materiál vybereme ze základní databáze programu:

Material → Library → Steel → DIN 1.3505

4 Definice parametrů tření

Postupně definujeme tři různé koeficienty tření. Volíme model podle Trescy .

Friction \rightarrow Manual \rightarrow Plastic Shear Friction \rightarrow 0.3, 0.85 a 0.00

Parametry tepelné výměny

Definujeme parametry výměny tepla a počáteční teploty nástrojů a polotovaru.

Lead

Model	۲			
Material	۲			
Press	۲			
Friction	×			
Heat	•	Die	•	Manual
Remesh	۲	WorkPiece	•	Library
DieType	.⊧"			
Boundary condition	•			
Cut plane	٠			
Remove unused				

41

Model	۰I	From file
Material	۲	CAD import
Press	۲	CAD preview
Friction	۲	Autoritaria
Heat	۲	Huto snape
Remesh	۶Ļ	From Result
DieType	۲I	
Boundary condition	۲I	
Out plane	۲I	
Remove unused		

ABRAT

Válcování kroužku

10.11

DK Cancel

Heat \rightarrow *Die* \rightarrow *Manual* \rightarrow Počáteční teplota 20°C Součinitel tepelné výměny s prostředím 50 W/(m2*K) Součinitel tepelné výměny s tvářeným materiálem 20000 W/(m2*K) Sálání do prostředí 0.25

Heat \rightarrow *Workpiece* \rightarrow *Manual* \rightarrow Počáteční teplota 20°C Součinitel tepelné výměny s prostředím 50 W/(m2*K) Sálání do prostředí 0.25

✤ Definice stroje *Press* \rightarrow *Manual* \rightarrow *Tabular Motion Table type* \rightarrow *Time/Velocity*

Time $-0.00 \text{ sec} \rightarrow$ *Translational velocity* $Y -1 (mm/s) \rightarrow Angular velocity 100$ $ot/min \rightarrow Add \rightarrow OK$

Time - 3.16 sec \rightarrow *Translational velocity* $Y - 1 (mm/s) \rightarrow Angular velocity 100$ $ot/min \rightarrow Add \rightarrow OK$

Time – 3.16 sec, \rightarrow Translational velocity Y 0.8 (mm/s) \rightarrow Angular velocity $0 \text{ ot/min} \rightarrow \text{Add} \rightarrow \text{OK}$

0.25

Press Plot	History		
	Ресс Тура	Tabular Hotion (Transk	ation & Rotation) 📃 💌
– Tabular Motioe	Translation & Rotation)		
Table type:	lime/Velocity 🔄		
Time	Translational velocity (KYNZ)	Angular velocity
0	[0) jo	0
oecond	mm/seo		💌 ratelion/min 💌
Time	Translivel X Translivel Y	Tianslivet Z Ang w	aL Add & cland
3.16	0 -1	0 100	E et selection
			Modify Delete
			Read from/write to file
			Read White

♣ Okrajové podmínky nástrojů

Definujeme, ve kterých směrech hlavního souřadného systému se nástroj nebude moct pohybovat. Vytvoříme dva stejné objekty. Pojmenujeme je "z" a "w".

 $DieType \rightarrow DieInsert \rightarrow Manual$

Po přidání všech prvků procesů bude okno objektů vypadat následovně.

5.2 Definice osy otáčení nástrojů

V okně objektů klikneme pravým tlačítkem na:

axialroll → Rotation axis/local systém → určujeme 3 (pouze pro osu otáčení) nebo 4 (pro osu otáčení a pro souřadný systém) body na hraně jedné rovinné plochy

Ikonu v levém horním rohu použijeme pro změnu směru otáčení.

Pro vymazání bodů, které určují osu otáčení, použijme ikonu.

Pro editaci jednotlivých bodů vybíráme jeho číslo a následně v pracovní oblasti vybíráme jeho novou polohu.

43

Menu výběru v pravém dolním rohu slouží pro definování, který souřadný systém se bude používat pro otáčení, a který pro posuv. Vybíráme "use for rotation".

Tento postup opakujeme pro zbývající nástroje.

V okně objektů pravým tlačítkem na:

Centerroll → Rotation axis/local system → definujeme 3 body na hraně jedné rovinné plochy → use for station → OK

roller \rightarrow Rotation axis/local systém \rightarrow definujeme 3 body na hraně jedné rovinné plochy \rightarrow use for station \rightarrow OK

5.3 Přiřazení prvků procesu ke stromu procesu

Vytvořené prvky procesu by se měly přiřadit ke stromu procesu. Abychom to mohli provést, musíme vytvořit nové nástroje.

 $RMB \ Proces \rightarrow Insert \rightarrow Die$ nebo $Increase \ Dies/WPs \ by$

Jména nástrojů musíme zmodifikovat souhlasně se jmény, které byly nadány geometrií nástrojů (mandrel, axialroll1, axiaroll2).

n axialn axialn	DieType Copy	•
- Ambie	Rename	
	Delete	

Po přiřazení všech prvků by měl strom procesů vypadat následovně:

4 Síť konečných prvků

Pro vytvoření sítě klikneme na ikonu mesh ve stromě procesu.

V záložce "Advanced" definujeme parametry sítě pro modul "Ring mesh"

 $Mesh \rightarrow Create new mesh \blacksquare \rightarrow Close$

Zapnutí stabilizace modelu

Při procesech válcování kroužků se doporučuje zapnout stabilizaci modelu.

		8889	1	
		(BAA)	12	
			TH	
			THE REAL	
			and the second s	
z بالت	A.			
Ar sy	War	kPiece		
Input for Mesher to Create a New No	sh			
Element size 4 mm	Elements 4109	Mesher	Ringmesh	Ŧ
Advanced	🗖 Vokinienesh drecilji en STL	Element type	Hesahedal	·*
Forming Cont	rol (FE)			×

Výpočet počtu časových kroků

V procesech válcování je možnost automaticky zvolit počet časových kroků v závislosti na nadefinovaných parametrech modelu. Počet časových kroků se počítá na základě poloměru (R) hnaného válce, obvodové rychlosti (ω), celkového času procesu (T) a velikosti prvku tečně k povrchu nástroje (3e) ze vztahu:

$$n = \frac{2\pi R\omega T}{e}$$

Ověření správnosti zadaných údajů

Check data
$$\rightarrow$$
 OK

♣ Spuštění simulace procesu

RUN

Shrnutí pojmů 5.1.

Válcování kroužků pomocí programu Simufact.forming 9.0.

Stabilizace procesu

Složený tabulkový pohyb

Nový modul RingMesh

Výpočet počtu časových kroků

Otázky 5.1.

- 17. Jaký typ procesu vybíráme při válcování kroužku?
- 18. Jakou síť konečných prvků nanášíme na válcovaný kroužek?
- 19. Jakou cestou nadefinujeme vlastní stroj?
- 20. Můžeme nadefinovat i nepoháněné (volné) nástroje?

6 PROTLAČOVÁNÍ - ECAP

Cílem příkladu je namodelování procesu protlačování rovnostranným pravoúhlým kanálem technologie ECAP (Equal Channel Angular Pressig) umožňuje získat ultra-jemné zrno ve větších objemech, kdy se při vlastním protlačování nezmenšuje výchozí příčný průřez. Výsledkem příkladu je prohloubení znalostí o deformačním chování kovových ultra-jemnozrnných materiálů (nano-materiálů) a vlivu plastické deformace na strukturu, mechanické vlastnosti a tvářitelnost.

Čas ke studiu: 45 minut

Cíl: Po prostudování tohoto odstavce budete umět

- Sestavení procesu protlačování.
- Vložení předdefinované geometrie.
- FE mesh Overlay Hex.
- 4 Deformační chování kovových ultra-jemnozrnných mateirálů.

Uložíme vytvořený projekt: Save project as \rightarrow ECAP

↓ Geometrie

Geometrie nástrojů i polotovaru byly připraveny jako soubory *.stl a mohou být vloženy do procesu přes:

 $Insert \rightarrow Model \rightarrow From \ file... \rightarrow importujeme \ v \ sechny \ soubory \ polotovar_ECAP.stl, \\ nastroj_ECAP.stl, \ prutlacnik_ECAP.stl$

nebo

pravým tlačítkem myši v okně objektů:

 $Model \rightarrow From file... \rightarrow importujeme všechny$ $soubory polotovar_ECAP.stl, nastroj_ECAP.stl,$ $prutlacnik_ECAP.stl$

↓ Definice materiálu pro nástroje

Materiál vybíráme ze základní databáze programu:

Material→ Library→ ToolSteel→ AISI_to_JIS→ SKD61

EC_1350(T=240-480C)

SuperPure(T=200-600C)

....

4 Definice materiálu polotovaru

Materiál vybíráme ze základní databáze programu:

Material \rightarrow Library \rightarrow Aluminium \rightarrow EC_1350 (T=20C)

✤ Definice stroje

Proces je prováděn na hydraulickém lisu s rychlostí 0,5 mm/s

Press→ Manual→ vybereme Hydraulic Press, Lis má lineární průběh, rychlost = 0,5 mm/s → OK

Název \rightarrow HydrLis

Press			1988		— ×
Press Plot Histo	ry Press Type	Hydraulic Pres	15		-
0					
	Initial Velocitu(VS)	0	m/sec	-	
	End Velocit/VE1	0	m/sec		
	Time	0	second	Ŧ	
	Regular Speed				
1	Velocity(V)	0.5	mm/sec	•	

-Madenials -Ma Aluminum -Ma Copper -Ma Japane -Ma Lead -Magnesium

Constant Steel

ToolStee

Uranium Zircalloy

+ Definice parametrů tření

Postupně definujeme tři různé koeficienty tření. Volíme model podle Trescy.

Friction \rightarrow Manual \rightarrow Mix: Coulomb: 0.05; Tresca: 0.2 \rightarrow mix005

con Friction		×
Type of Friction		
Coulomb Friction Static friction coefficient ([0.0 - 0.5]	0.05	
Plastic Shear Friction Interface friction lactor (m) [0 - 1]	0.2	

Nodel Naterial Press Priction Pean Premesh Cut plane Remove unused

Definujeme parametry výměny tepla a počáteční teploty nástrojů a polotovaru.

Parametry tepelné výměny

Heat \rightarrow *Die* \rightarrow *Manual* \rightarrow

Počáteční teplota 20°C

Součinitel tepelné výměny s prostředím 50 W/(m2*K)

Součinitel tepelné výměny s tvářeným materiálem 20000 W/(m2*K)

Sálání do prostředí 0.25

 \rightarrow DieTemperature20

Shrnutí pojmů 6.1.

Simulace protlačování procesu ECAP pomocí programu Simufact.forming 9.0.

Protlačování rovnostranným pravoúhlým kanálem

Plastická deformace

Vyhodnocení intenzity deformace

Otázky 6.1.

- 21. Jaký typ procesu vybíráme při dopředném protlačování?
- 22. Co nám umožňuje dosáhnout proces ECAP?
- 23. Jaký typ modulu použijeme při definici sítě na polotovar při procesu ECAP?
- 24. Co vyhodnocujeme u simulace procesu ECAP?

7 KOMBINACE PROCESŮ

Cílem příkladu je namodelování procesu tváření za tepla. Bude nasimulován proces kování závěsu s okem. Simulace proběhne ve čtyřech etapách – první – chlazení, další – tváření.

Řešený příklad

7.1 Etapa I - chlazení

Simulace procesu chlazení.

Vytvoříme nový projekt a následně první etapu procesu. Typ procesu vybíráme chlazení.

 $New \rightarrow Process Properties \rightarrow Cooling$

Volíme parametry:

- 3D - trojrozměrná simulace

- FV metoda konečných prvků
- Hot proces za tepla

Save project as \rightarrow Chlazení

↓ Geometrie

Polotovar pro proces chlazení byl připraven jako soubor *.stl. Plošinu, na které budeme ochlazovat, vytvoříme funkcí AutoShape.

Polotovar

Model → *From File* → *Chlodzenie_Wsad.stl*

Platforma

 $Model \rightarrow Auto Shape \rightarrow Cube \rightarrow 400 \times 400 \times 100$ mm

 $Název \rightarrow Platforma$

V okně objektů se ukazují nové prvky. Pomocí dvojkliku se můžeme podívat na jejich geometrii a vlastnosti.

Cooling	Faring	
-	i⊛ Hα	C Cold
	Simulation C 20	@ 3D
	Suggested as C FE	eren (€ PV

AutoShape			
Auto shape ty	pe:	Cube shape	•
Shape Size	Width : Depth : Haight :	400 400 100	
	Length u	nit : millmeter	•
		OK	Cancel

Kombinace procesů

Material \rightarrow Library \rightarrow Steel \rightarrow AISI 1015 (T=800-

✤ Definice materiálu

1200C)

Definice parametrů tření

Vybíráme model podle Trescy.

Friction \rightarrow Manual \rightarrow Plastic Shear Friction \rightarrow 0.4 Název \rightarrow m04

↓ Parametry tepelné výměny

Definujeme parametry výměny tepla a počáteční teploty nástrojů a polotovaru.

Heat \rightarrow *Die* \rightarrow *Manual* \rightarrow *postupně zadáváme:*

o Počáteční teplota 150°C

 \circ Součinitel tepelné výměny s prostředím 50 W/(m2*K)

 Součinitel tepelné výměny s tvářeným materiálem 6000 W/(m2*K)

o Sálání do prostředí 0.25

Pojmenujeme → Name Chlazení

Heat \rightarrow *Workpiece* \rightarrow *Manual* \rightarrow *postupně zadáváme* 1200, 50, 0.25

Pojmenujeme → *Name* T1200

Definice nástrojů

V tomto kroku nebudeme potřebovat všechny nástroje. Vymažeme proto nástroj UpperDie a necháme pouze LowerDie a Workpiece.

 $Označíme UpperDie ve stromě \rightarrow RMB \rightarrow Delete$

< 11

👶 Die Temperature			×
🏦 🍅	Initial Die Te	mperature	
N N	150	Celsius	-
Die 🔜	Heat Transfe	er Coefficient to Ambient	
	20 50	Watt/(m21K)	Ŧ
(wp)	Heat Transfe	er Coefficient to Workpiec	
	6000	Watt/(m21K)	¥
	Enissivity for	Heat Radiation to Ambier	k.
	☆ 0.25	[0-1]	
		OK C:	lean

Fakulta strojní, VŠB-TU Ostrava

Takto připravenou sestavu parametrů procesu přiřadíme ke stromu procesu: Processes 🔁 Chiodzenie Name 🔟 LowerDie @DB.AIS1_1015(T=800-1. 🕖 Platforma 🗇 Chlodzenie_Wsad 500 gazz 🖉 Platforma 🥨 Chlodzenie 333 m04 WorkPiece 🔞 Chlodzenie 🌈 Chlodzenie_Wsad 🔣 Т1200 😌 DB.AIS1_1015(T-80 👹 т1200 | Ambient Temperature 🛐 Cooling Teplota prostředí 4 a $\rightarrow 20^{\circ}C$ Strom procesů \rightarrow DK lign BoundingBox. Position in X Center ↓ Ustavení nástrojů a polotvarů Center in'r Pro ustavení použijeme Align BoundingBox (na WorkPiece). Center in Z Pasition Center 'nΧ Center Center 'nΖ 0K Vůči sobě vystředíme plošinu a polotovar.

Přesuneme polotovar nad plošinu a gravitačně ustavíme tak, aby upadnul na plošinu.

♣ Parametry procesu

Pro nadefinování zbylých parametrů procesu použijeme menu "Cooling".

Cooling \rightarrow Basic settings \rightarrow velikost prvku 10 mm, čas ochlazování 6 s

Cancel

57

Počet čár: 5

s parametry:

 \rightarrow Planes

RMB

Počet vnitřních bodů: 2

↓ Definice senzorů

 \rightarrow Insert

Počet bodů na vnější čáře: 50

Ověření správnosti zadaných údajů

Vytváříme 5 rovin na délku,

Check data \rightarrow *OK*

♣ Spuštění simulace procesu

RUN

7.2 Druhá etapa - pěchování

První etapa tváření – zaoblení polotovaru na lichoběžníkových kovadlech.

Particles

Definice nové etapy procesu

Process \rightarrow *Insert Process* \rightarrow *Upsetting* \rightarrow *Hot* 3D *FV* Název → Etapal

4 Geometrie

 $Model \rightarrow$ From File \rightarrow Etap1 MG, Etap1 MD *Model* → *From result* → *Chlazení* 100 %

♣ Parametry tepelné výměny

Definujeme parametry výměny tepla a počáteční teploty nástrojů a polotovaru.

Heat \rightarrow *Die* \rightarrow *Manual* \rightarrow *postupně zadáváme:*

Initial Die Temperature

Celsius

Well/[m2°K]

Watt/(m2*K)

(0-1)

OK. Cancel

Heat Transfer Coefficient to Ambient

Heat Transfer Coefficient to Workpiece

Emissivity for Heat Radiation to Ambient

-

-

-

16 120

8 50

25000

0.25

- 😳

ŴΡ

- Počáteční teplota 150°C
- Součinitel tepelné výměny s prostředím 50 W/(m2*K)
- Součinitel tepelné výměny s tvářeným materiálem 25000 W/(m2*K)
- o Sálání do prostředí 0.25

Název → Proces

- Ustavení nástrojů a polotovarů
 Vypneme UpperDie
- $WP \rightarrow RMB \rightarrow Align Bounding Box$

Přeneseme WP po ose Z nad LowerDie.

Align box	for this com;	ponent	
	Position		Set all to:
in×	Center	•	Көөр
in Y	Center	T	Center Min
'nZ	Center	•	Max
to the b	iax of 🛄	kerDie	•
	Position		Set all to:
in×	Center	-	Кеер
	Center	•	Center
inr	Center	<u> </u>	Min
'nΖ	Center	•	Max
		DK	Cancel

Align BoundingBox..

Gravitačně ustavíme WP Zapneme UpperDie a přesuneme nad WP Gravitačně ustavíme UpperDie

4 Definice stroje

Proces je prováděn na hydraulickém lisu s rychlostí 250 mm/s.

Název → HydrLis

\rm Definice bodů

Definujeme body na vodorovném povrchu nástrojů.

↓ Definice dalších parametrů procesu

Forming \rightarrow Stroke \rightarrow ...

Vybrat nadefinované body a jako konečnou vzdálenost mezi nimi zadat 20 mm.

Přiřazení ke stromu procesu.

B Forming Control	(FV) 🔀
- Stroke - Element Sizes - Output Divisions - Output Results	Direction C Up @ Down
Solver Optinize	Specify stroke Elser Central Peests point Diet point P2 v P1 v Initial distorce In Z. S1198649395 Initial distorce In Z. Coreel
	OK Anuki

Forming Control (FV)		×
 Stole Bineter Steel Durput Deviant Durput Results Soler Outrace Soler Outrace Soler Outrace Soler Outrace Soler Outrace Soler Outrace Soler Soler Soler Soler Soler Soler Soler Soler Soler Soler Soler Soler Soler Soler Soler Soler Soler Soler Soler Soler S	WorkPiese Element Size (1) 10 mm Die Element Size (*) 10 mm Maxmanber of Die da 14 wWP als (*) 1 finet to zero, no default will be ret when needed first time. (*) If net to zero, the workpiece element size will be uned	
	OK. Amduj	

Forming \rightarrow Element Sizes \rightarrow 10 a 10 mm

↓ Ověření správnosti zadaných údajů

Check data \rightarrow OK

Spuštění simulace procesu

RUN

7.3 Třetí etapa - pěchování

Druhá část procesu tváření.

🖊 Geometrie

 $Model \rightarrow From File \rightarrow Etap2_MG, Etap2_MD$

Model \rightarrow From result \rightarrow Etap1 100 %

- Ustavení nástrojů a polotovaru
- Obrátíme WP o 90° okolo osy Y
- Vypneme UpperDie
- Přesuneme WP po ose Z nad MD
- Gravitační ustavíme WP
- Zapneme UpperDie a ustavíme tak, aby se dotýkal horní části WP

4 Parametry materiálu, tření a teploty

Pro definování materiálu, tření a teploty využíváme parametry s předchozího procesu.

🖊 Definice bodů

Nadefinujeme body na vnitřních vodorovných površích nástrojů.

Přiřadíme prvky ke stromu procesu.

↓ Definice zbývajících parametrů procesu

Forming \rightarrow Stroke \rightarrow ...

Vybrat nadefinované body a jako konečnou vzdálenost mezi nimi zadat 56 mm.

Forming \rightarrow Element Size \rightarrow 10 a 10 mm

Stroke	Direction		
- Output Divisions	Discipli	C Up	C Down
- Output Results - Solver Optimize	Specify stroke		1
E Advanced	Press's paint	Die's poist	Blow Control
RETUMOM	P2 •	P1 V	
- Contact - Step control		200 204000000	
Miscellaneous	Initial distance in Z	56	
	Distance at 100% stroke	204 204680900	x
	results in a stroke of	lee e te constante de la marin	
	[OK Cancel	
			-
		OK	Anuki
Forming Control	(FV)	event Size (1)	
Forming Control Stoke Denet Sizes Output Devices	(FV) WoltPiece Ele	ment Size (*)	m
Forming Control Stroke University Stroke University Stroke University Results Schart Optimize	(FV) WorkPlace Ele Die Element Si	ment Size (*) 10 ze (*) 10	170 170
Forming Control Scole Dement Sees Output Presides Schur Cplinize Schur Cplinize Advenced Scher	(FV) WolkPlace Ele Die Element St Man number of	ment Size (* 10 ze (*) 10 Die ek 2	ma ma xWP ets
Forming Control Stole Dement Stes Output Preside Solar Optimize Solar Optimize Solar Optimize Solar Optimize Solar Optimize Solar Optimize	(EV) WolkPlace Ele Die Element Si Mar number of C'11 set to zaio	ment Size (" ¹⁰ ze (") 10 Dise els 2 La dellaut wil be set when	ma ma kWP ets reacted litet time.
Forming Control	(FV) WolkPlace Els Die Element Si Max number of ("IT eet to zero (") It eet to zero	ment Size (" <mark>10</mark> ze (") 10 Die els 2 a dellaut wil be est when a. the ventpiece element ai	ma ma kWP etc readed flict time. to will be used.
Stole Stole Stole Stole Output Results Soler Ophita Advance Soler - RETIVION - Carlest - Stoler - RETIVION - Carlest - Macantel M	(FV) WorkPlace Ele Die Element St Mar number of (") If set to zero (") If set to zero	ment Size (*) ¹⁰ ze (*) 10 Die els 2 . a delauft wil be set when a. the workpiece element ac	mo no xWP etc readed first line. so will be used.
Earming Control Boole Element Seet Output Devices Solar Ophibia Solar Op	(FY) Worl/Pass Ele Die Element Si Mas runder of ("IT rait to zaro (")") if set to zar	ment Size († 10 ze (*) 10 Die els 2 La oblauf wit be set when a. The work piece element al	nn nn xWPds reschdfist fre. swil be usel
Forming Control Scole Scole Scole Output Design Output Resids Soler Optimize Advance Scoler Optimize Advance Scoler Optimize Scoler Optimize Scoler Optimize Scoler	(FY) WoolPieceEle Die Element Si Maar wurdte of ("If all to allo (")") act to con	ment Size (1) ¹¹⁰ re (**) 10 Die els 2 2. Die schauft wich beischwieren e. Die vochpiece element au	no no xWPets recold first fine. recold first fine.
Forming Control Scale Scale Scale Scale Output Design Output Results Scher Optimize Advanced Scher RET/Non Cartact Scher Reconstructure Miscellaneous	(FV) WolfPace Ele Die Clemen Si Man number of C'IT rein to zeno C'IT rein to zeno C'IT rein to zeno	ment Size (") ^{TO} ze (") 10 Dio els 2 La dellaut vit bo est often He vechpicce element ad	ma ma kWPets readed first time, readed first time, readed first time,
Forming Control Scale S	(FV) WorkPlace Ele Die Element St Maar number of (*) If sel to caro (*) If sel to caro	ment Size (*) 10 ze (*) 10 Die els 2 . a delauf wil be est when . i he workpiece element ai	m m kWP ds reacted that time. reacted that time. so will be used.
Forming Contool Socie S	(FY) WorlPinoEls Die Einnen Si Mar wurbe di ("IT with and ("T with and (") li act to con	ment Size (1) TO TO TO TO TO TO TO TO TO TO	no no x∨Pes reacted that time. as wit be used
Forming Control Stroke Ereneti Stes Output Dreises Output Results Solver Optimize Advanced Solver Advanced Solver RetTil/Kon Carlast Solver Miscellaneous	(FY) WolfPace Ele Die Elemen Si Mai nuntes of (11 rei for 20 act to con	ment Size (") <mark>10 ne (") 10 Die els 2 a. He vool piece element al</mark>	mo ma kWPets rescut first time. reschil be used.
Forming Control Prote Prote Prote Protect Protect Protect Output Device Output Results Solver Ophibie Protect Solver Protect Prot	(FV) WolkPace Ele Die Elemen Si Mar runder d C'III reit to zaio (*) II reit to zaio	ment Size (") 10 ze (") 10 Die els 2 La deltaut wit be set when La he work piece element de	ma ma xWP etc readed first time. readed first time.

♣ Ověření správnosti zadaných údajů

Check data \rightarrow OK

♣ Spuštění simulace procesu

RUN

7.4 Čtvrtá etapa – zápustkové kování

Třetí část procesu tváření – zápustkové kování.

 $Process \rightarrow Insert \ Process \rightarrow Closed \ Die \rightarrow Hot \ 3D \ FV$

Název → Etap3

0	•
(-anmat	r10
CICOIIICI	

 $Model \rightarrow From File \rightarrow Etap3_MG, Etap3_MD$

Model \rightarrow From result \rightarrow Etap2 100 %

- Ustavení nástrojů a polotovaru
- Vypneme UpperDie
- Obrátíme WP o 90° okolo osy X a následně o 90° okolo osy Z
- Přesuneme WP podél osy Z nad MD (Zkontrolujeme ustavení pomocí "View angles" a upravíme ručně)
- Gravitačně ustavíme WP
- Zapneme UpperDie a ustavíme tak aby se dotýkal horní části WP

♣ Parametry materiálu, tření a teploty

Pro definování materiálu, tření a teploty využíváme parametry s předchozího procesu.

🖊 Definice bodů

Nadefinujeme body na vnitřních vodorovných površích nástrojů.

Přiřadíme prvky do stromu procesu.

Simulation C 20 @ 30 Suggested colver C FE @ FV
--

↓ Definice zbývajících parametrů procesu

Forming \rightarrow Stroke \rightarrow ...

Vybrat nadefinované body a jako konečnou vzdálenost mezi nimi zadat 13.5 mm.

Forming \rightarrow Element Sizes \rightarrow 10 a 10 mm (můžeme zvětšit přesnost výpočtu a prodloužit jejich čas pomocí redukce rozměru prvku na 3÷4 mm)

Na záložce Output Results označíme Fold/Lap.

Forming Control (FV)	X
Storke Storke Storke Storke Output Divelons Output Divelons Output Bisels Output Bisels Output Bisels Solver Optimize Storker Storker Storker Storker Storker Storker Misselsneous	WorkPiece Element Size (1) 10 mm Die Element Size (**) 10(mm Max number of Die els 2 ir WP dis (*) If set to zero, a default wil be set when needed first time. (**) If set to zero, the morkpiece element size wil be used.
Forming Control (FV) Stoke Benent Sizes Output Divisions	Partick output
Output Results Solver Optimize Advanced Solver RET(NON	I™ FoldDaal □ Demoge
- Contact - Step control - Miscellaneous	Dieveer Principal Streams Meximum distance to fre die 5 mm
	DK Andaj

Ověření správnosti zadaných údajů

Check data \rightarrow OK

♣ Spuštění simulace procesu

RUN

Shrnutí pojmů 7.1.

Sestavení modelu kombinující více procesu simulace tváření.

Procesy – chlazení, pěchování materiálu, zápustkové kování

Definice bodů a senzorů

Využití menu "Cooling" při procesu chlazení

Otázky 7.1.

- 25. Lze v programu Simufact.forming 9.0 kombinovat více procesů?
- 26. Popište cestu nadefinování senzorů na polotovaru?
- 27. Jaký typ Forgingu vybíráme při zadávání procesu zápustkového kování Hot/Cold?
- 28. Lze polotovar ustavovat gravitačně?

Klíč k řešení

- Zápustkové a volné kování (za studena i za tepla), Válcování, Protlačování, Ohýbání, Stříhání, Chlazení, Vytlačování
- 2. Heating
- 3. Definice materiálu, Parametry výměny tepla, Definice senzorů, Definice tabulky kontaktů, Síť konečných prvků, Další nastavení procesu
- 4. Ano
- 5. Ořezávání, děrování, vystřihování, ostřihování
- 6. Metoda FE, metoda FV
- 7. Moduly SlMesh tetra, Overlay Hex
- 8. StageControl přidáme tak, že pravým tlačítkem myši klikneme v okně stromu procesu a vybereme "Insert StageControl".
- 9. Upsetting
- 10. Metoda FE
- 11. 4 varianty
- 12. Ano
- 13. Forwar Extrusion
- 14. Sheetmesh
- 15. Varianta s použitím přidržovače, varianta bez použití přidržovače
- 16. Die type \rightarrow Die spring \rightarrow Manual
- 17. Ring Rolling
- 18. Ring Mesh
- 19. Press \rightarrow Manual \rightarrow Tabular Motion \rightarrow Table type \rightarrow Time/Velocity
- 20. Ano
- 21. Forward Extrusion
- 22. Získat ultra-jemné zrno materiálu
- 23. FE modul Overlay Hex
- 24. Intenzitu deformace
- 25. Ano
- 26. RMB \rightarrow Insert Particles \rightarrow Planes
- 27. Hot
- 28. Ano

Další zdroje

EC ENGINEERING, Simufact [online], <<u>http://www.ec-e.cz/cz/simufact</u>>

KEDROŇ, J. Simulace protlačování slitin AlMn1Cu a AlFe1,5Mn klasickým a upraveným nástrojem ECAP, Ostrava, 2009. 70s. Diplomová práce na Fakultě strojní VŠB-Technické univerzity Ostrava na katedře mechanické technologie. Vedoucí diplomové práce prof. Ing. Stanislav Rusz, CSc.

PETRUŽELKA, J. HRUBÝ, J. Výpočetní metody ve tváření. Ostrava: VŠB – TU Ostrava, 2000

HRUBÝ, J. Tváření kovů - analýza procesů. Ostrava: VŠB - TU Ostrava, 1994. [online]. poslední aktualizace 19. 9. 2009. [citováno 17. 10. 2009]. URL: www.345.vsb.cz/jirihruby/texty/TvareniKovuAnalyzaProcesu.pdf.

HRUBÝ, J. Počítačová podpora ve tváření. [online]. poslední aktualizace 26. 8. 2009. [citováno 16. 12. 2009]. URL: <u>www.345.vsb.cz/jirihruby/ppt</u>.

HRUBÝ, J. Tváření kovů - analýza procesu. int. učení texty, VŠB, kat. 345, 1995