

Vysoká škola báňská – Technická univerzita Ostrava

Fakulta strojní

POČÍTAČOVÁ PODPORA ZPRACOVÁNÍ TÝMOVÝCH PROJEKTŮ - MATHCAD

Mathcad – návody do cvičení

Ing. Milada Hlaváčková, Ph.D.

Ostrava 2011

Tyto studijní materiály vznikly za finanční podpory Evropského sociálního fondu (ESF) a rozpočtu České republiky v rámci řešení projektu OP VK CZ.1.07/2.3.00/09.0147 "Vzdělávání lidských zdrojů pro rozvoj týmů ve vývoji a výzkumu".

Název: Počítačová podpora zpracování týmových projektů - Mathcad Autor: Ing. Milada Hlaváčková, Ph.D. Vydání: první, 2011 Počet stran: 43 Náklad: Studijní materiály pro konstrukční obory navazujícího studia Fakulty strojní Jazyková korektura: nebyla provedena.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Tyto studijní materiály vznikly za finanční podpory Evropského sociálního fondu a rozpočtu České republiky v rámci řešení projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Vzdělávání lidských zdrojů pro rozvoj týmů ve vývoji a

výzkumu CZ.1.07/2.3.00/09.0147 Vysoká škola báňská – Technická univerzita Ostrava *Realizace:*

© Ing. Milada Hlaváčková, Ph.D. © Vysoká škola báňská – Technická univerzita Ostrava ISBN 978-80-248-2761-2

Název:

Číslo:

POKYNY KE STUDIU

Prerekvizity

Není požadována žádná prerekvizita.

Cíl učební opory

Cílem učební opory je dát studentům návod k užití výpočtového programu MATHCAD. Tento výpočtový program je vhodný pro řešení týmových programů, projektů, které studenti zpracovávají v rámci předmětu Aplikovaná mechanika a v rámci dalších technických předmětů. V této učební opoře jsou objasněny jen základní funkce k ovládnutí programu MATHCAD, které však umožní zpracování týmových projektů na odpovídající úrovni.

Pro koho je předmět určen:

Předmět je určen všem studentům Fakulty strojní VŠB-TUO, kteří zpracovávají týmové i individuální projekty a programy.

V rámci výuky předmětu MATHCAD budou studenti seznámeni s následujícími kapitolami:

- Úvod a základní informace o programu MATHCAD
- Vkládání textu a jeho úprava, vkládání obrázků
- Maticové operace
- Soustavy rovnic a metody jejich řešení
- Symbolické operace derivace
- Symbolické operace integrování
- Tvorba grafu funkcí 2D
- Tvorba grafu funkcí 3D
- Vektorový počet a jeho užití v technické praxi
- Rovnice
- Numerické řešení rovnic

Rozsah předmětu je 2+0 (2 hodiny cvičení v počítačové učebně). Podmínky absolvování předmětu jsou následující:

Předmět je ukončen klasifikovaným zápočtem.

Požadavky na získání klasifikovaného zápočtu

- Účast ve cvičeních (maximální povolená neúčast 3 cvičení)
- Napsání závěrečného testu na minimálně 51 bodů

Studenti Fakulty strojní mají dobré teoretické znalosti. Dosud se však nerozvíjela jejich zkušenost s prací v týmu. Je proto vhodné, aby programy nebo projekty byly zadávány jako týmová práce. Vzhledem k tomu však musí být zadání i dostatečně rozsáhlé a náročné, musí mít studenti k dispozici i počítačovou podporu pro řešení zadané problematiky. Software musí být dostupný všem studentům a je vhodné, aby studenti užívali jeden program tak, aby si mohli při řešení týmových projektů předávat číselné výsledky jednotlivých dílčích řešení.

Čas ke studiu kapitoly: 90 min

Zpracovaná opora umožní studentům snadnější zpracování týmových projektů technických předmětů (např. Aplikovaná mechanika, Dynamika, Statika atd.)

Cíl: Po zvládnutí programu MATHCAD budete umět řešit:

- Maticové operace, tvorba inverzních a transponovaných matic a jejich užití v technické praxi
- ♣ Řešit lineární a nelineární soustavy rovnic
- Využít program MATHCAD k řešení derivací a integrací (pohybové rovnice atd.)
- ↓ Vykreslení grafů funkcí 2D a 3D
- Vektorový počet a jeho užití v technické praxi
- ↓ Numerické řešení rovnice

OBSAH

ÚVOD

1.	KAPITOLA – ZÁKLADNÍ MATEMATICKÉ OPERACE	6
2.	KAPITOLA – TEXT	10
3.	KAPITOLA – MATICE	12
4.	KAPITOLA – SOUSTAVY ROVNIC	15
5.	KAPITOLA – SYMBOLICKÉ OPERACE	21
6.	KAPITOLA – SYMBOLICKÉ OPERACE, DERIVOVÁNÍ FUNKCE	
7.	KAPITOLA – TVORBA GRAFU FUNKCE	29
8.	KAPITOLA – GRAF FUNKCE 2 PROMĚNNÝCH	
9.	KAPITOLA – VEKTOROVÝ POČET	35
10	.KAPITOLA – ŘEŠENÍ ROVNIC	37
11	.KAPITOLA - EULEROVA NUMERICKÁ METODA	39

ÚVOD

Program MATHCAD je dostupný všem studentům Fakulty strojní. Je k dispozici na učebnách Fakulty strojní VŠB-TUO. Program umožňuje širokou škálu využití při řešení týmových projektů v technických předmětech. Jde o uživatelsky "přívětivé prostředí". Program umožní studentům číselné variantní řešení včetně grafických výstupů řešených problémů. V rámci tohoto výukového textu budou objasněny pouze naprosto základní funkce programu a jejich užití tak, aby studenti po jejich prostudování mohli užít program MATHCAD pro řešení úloh technických předmětů. Pro snadnější pochopení a zvládnutí programu jsou jednotlivé kapitoly doplněny konkrétními příklady z předmětu Statika, Dynamika a Aplikovaná mechanika.

1. Kapitola

V kapitole č. 1 jsou shrnuty základní informace o programu MATHCAD.

Program MATHCAD má stejné zákonitosti práce s objekty jako programy firmy Microsoft, tzn. ukládání souborů, otevírání souborů, tisk souborů atd.

Veškeré informace o programu MATHCAD jsou uvedeny v jazyce anglickém v "Helpu" viz. obr. 1.1. Aathcad - [Untitled:1]

Obrázek 0. 1 – Help

V Helpu jsou přehledně vypsány matematické operace, které lze v programu MATHCAD provádět a zároveň jsou zde jednoduché příklady, které slouží ke snadnějšímu pochopení problematiky (viz. obr. 1.2 a 1.3). 💕 Mathcad He - 🗆 🗵

Obrázek 0.2 – Help a jeho užití - I

Obrázek 0.3 – Help a jeho užití - II

Základní matematické operace lze provádět užitím "kalkulačky" (viz. obr. 1.4).

	Mathcad - [Untitled:1]	
0	File Edit View Insert Format Tools Symbolics Window Help	
	🚬 📽 🖬 🎒 🖪 🤍 🙏 🖻 🛍 🗠 ా 🖓 罪 🐂 🕼 💱 🗖 100% 🔹 🕅	
	++ ; == ∫% <≣ \$] ∞ ⇒	
K		
:=		
-		
->		
•		
fx		
x f xfy		

Obrázek 1.4 – Kalkulačka

Typy rovnítek a jejich užití je znázorněno na obrázku č. 1.5.

Použije-li se chybné rovnítko, nelze získat číselný výsledek.

$$\frac{\sqrt{3 \cdot (4+0.2)^2 + 2 \cdot (4^3 + e^2)}}{3 + \frac{2}{\left(4 \cdot \frac{1}{2} + 3\right)^3}} = 3.355 \qquad \frac{\sqrt{3 \cdot (4+0.2)^2 + 2 \cdot (4^3 + e^2)}}{3 + \frac{2}{\left(4 \cdot \frac{1}{2} + 3\right)^3}}$$

Při použití přiřazovacího znaménka lze řešit zadání obecně a získat různá číselná řešení při změně jedné nebo více zadaných veličin.

Pozn: Rozdílná číselná řešení nelze psát "vedle sebe" na stránku, ale je nutno je psát pod sebou. Do výpočtu by byla přiřazena nejníže zapsaná hodnota proměnné.

$$a := 3 \qquad b := 4 \qquad c := 2 \qquad d := 0.2$$

$$\frac{\sqrt{a \cdot (b+d)^{c} + c \cdot (b^{a} + e^{c})}}{a + \frac{c}{\left(b \cdot \frac{1}{c} + a\right)^{a}}} = 3.355$$

$$a := 3 \qquad b := 10 \qquad c := 2 \qquad d := 5$$

$$\frac{\sqrt{a \cdot (b+d)^{c} + c \cdot (b^{a} + e^{c})}}{a + \frac{c}{\left(b \cdot \frac{1}{c} + a\right)^{a}}} = 12.966$$

Písmenka při zadávání proměnných je nutno volit opatrně. Některé konstanty jsou v programu MATHCAD předdefinovány.

Příklad:

$$e = 2.718$$
 $R = 0.556 K$
 $g = 9.807 \frac{m}{s^2}$

Objeví-li se při řešení ve výrazu červená barva, vždy signalizuje chybu!

$$x1 := 1$$

 $y := \ln(|\ln(-\ln(x1))|)$

Klikne-li se pravým tlačítkem na červený text, získá se informace o povaze chyby.

1.2 Zadávání jednotek

Základní informace o jednotkách, které lze užívat při výpočtech programem MATHCAD, lze získat pomocí ikony "Odměrka". Kliknutím na tuto ikonu dojde k výběru fyzikální veličiny a zároveň je možno zvolit jednotku, kterou je možné použít (viz. obr.1.6)

₩ [:::] ×=	∫ <u>∰ <</u> ≣ 5⊐ ∞ø ≉			×
	Dimension		System	
	Energy	*	SI	ОК
	Force			
	Frequency	Ξ		Insert
	Illuminosity			
	Length	-		Cancel
	Unit			
	Centimeters [cm]			
	Feet [ft]			
	Inches [In]			
	Meters [m]			
	Miles [mi]			
	Millimeters [mm]		T .	

Obrázek 0.6 – *Volba jednotek*

Při výpočtu není nutno jednotky převádět. Výsledek vyjde v jednotkách soustavy SI.

Příklad:

a := 30.min b := 0.3hr a + b = 2.88×10^3 s

Je-li požadován výsledek v jiných jednotkách, klikne se pravým tlačítkem na jednotku a do černého políčka se vypíše zkratka požadované jednotky.

Přiklad:

a := 30.min b := 0.3hr
a + b =
$$2.88 \times 10^3$$
 s
a := 30.min b := 0.3hr
a + b = 2.88×10^3 s
a := 30.min b := 0.3hr
a := 30.min b := 0.3hr
a + b = 48 min

Zadávání úhlů:

Zadává-li se hodnota v úhlech, je nutno za hodnotou vypsat "deg" …degree.

V opačném případě je hodnota zadána v radiánech

Příklad:

$\alpha := 20 \cdot \deg$	$\beta := 20$
$\sin(20 \cdot \text{deg}) = 0.342$	$\sin(20) = 0.913$
$\sin(\alpha) = 0.342$	$\sin(\beta) = 0.913$

Zadávání násobných jednotek.

Jednotky násobné je nutno předdefinovat.

Příklad:	$F := 10 \cdot kN$
	$kN := 10^3 \cdot N$
	$F1 := 16 \cdot kN$
	$F1 = 1.6 \times 10^4 \mathrm{N}$

Vkládání a úprava textu.

Text je do souboru vložen kliknutím na mezerník. V případě, že je v textu číslo, neovlivní tato hodnota výpočet. Text se může upravovat stejným způsobem jako ve všech programech firmy Microsoft.

Vkládá-li se text připravený v programu Microsoft Word, lze tento soubor otevřít dvojím kliknutím pravým tlačítkem a dále upravovat.

V obou případech se úpravy textu provedou otevřením ikony "Format" na hlavní liště (viz. obr.2.1.)

S Mathcad - [mathcad-2.mcd]
File Edit View Insert Format Tools Symbolics Window Help
D → 🚅 🖬 🚔 💁 💖 ½ 🗈 🛍 ⊷ ⇔ "" 🗧 🎊 😨 〓 № 🍄 🗔 100% 💌 🕐
Normal ▼ Arial ▼ 10 ▼ B I U = = = = = =
□ + / [:::] ×= ∫‰ < 5 ▷ αβ ♠

Obrázek 2.1 – Úprava textu

Písmena řecké abecedy do výpočtu lze vkládat:

1. užitím ikony s řeckými písmeny (viz. obr.2.2.)

Obrázek 2.2 – Řecká abeceda

- 3. napsáním písmena a stisknutím kláves "ctrl g".
 - $a = \alpha$ $b = \beta$

Obrázky lze do MATHCAD souboru vkládat bez omezení.

Matice - jejich tvorba a operace s maticemi

3.1)

3.1 Tvorba matice

Matice lze vytvořit v programu MATHCAD kliknutím na ikonu "Matice" (viz. obr.

Obrázek 3.1 – Tvorba matice

Dalším kliknutím v otevřené ikoně "Matrix" na ikonu s obrázkem matice se otevře "Insert Matrix". Do této lišty se vyplní požadovaný rozměr matice a kliknutím na "OK" se otevře matice v požadovaném formátu, která se dále vyplní. (viz. obr. 3.2)

File Edit View Inse	ert Format Tools Symbolics	Window Help	- 8
) - 🖻 🖬 🎒 🖪 🖤	※ 19 18 い co ** 1 19 1	🖸 🚍 💊 🕸 🗔 100%	• 0
■ // [:::]x=) <u>%</u> < <u>₹</u> \$1 0	β 📚		
	Insert Matrix		
Matrix 🔯	Rows: 3	ОК	
[:::] ∧ _n ×' × f(r) H [⇔] H [™] mn	Columns: 3	Insert	
\$.7 \$×7 Συ		Delete	ning to a traction of the factor
		Cancel	

Obrázek 3.2 – Postup tvorby matice

3.2 Operace s maticemi

Matici je vhodné pojmenovat (např. A) a veškeré operace pak provádět pouze se symbolem A.

$$\mathbf{A} := \begin{pmatrix} 2 & 2 & 3 \\ 1 & -4 & 0 \\ 3 & 2 & -7 \end{pmatrix}$$

Veškeré operace, které lze v programu MATHCAD s maticemi provádět, jsou popsány i s jednoduchými příklady v Helpu (viz. obr. 3.3).

😵 Mathcad Help	
Skrýt Zpět ∀před Domů	Tisk Možnosti
Obsah Rejstřík Hledat	Array Addition
Zadejte hledané klíčové slovo:	Keystroke: +
matrix operators	A + B
matrix and vector functions matrix determinant matrix eigenvalues and eigenvec matrix format	Adds the elements of A to the corresponding elements of B .
matrix function (for creating arrays	A + x
matrix inverse matrix operators	Adds x to every element in A .
Zobrazit	Operands:

Obrázek 3.2 – Užití Helpu

Výpis se prování pokynem

$$A_{2,1} = 2$$

 $A_{0,2} = 3$

V pořadí - 1. index řádek, 2. index sloupec.

Pozn: 1. řádek i sloupec mají index 0.

Sčítání matic

$$\mathbf{A} = \begin{pmatrix} 2 & 2 & 3 \\ 1 & -4 & 0 \\ 3 & 2 & -7 \end{pmatrix} \qquad \mathbf{E} := \begin{pmatrix} 1 & 3 & 5 \\ 4 & 5 & 8 \\ 1 & 1 & 1 \end{pmatrix} \qquad \mathbf{A} + \mathbf{E} = \begin{pmatrix} 3 & 5 & 8 \\ 5 & 1 & 8 \\ 4 & 3 & -6 \end{pmatrix}$$

Přičtení konstanty ke každému prvku matice

$$\mathbf{x} := 3 \qquad \mathbf{A} + \mathbf{x} = \begin{pmatrix} 5 & 5 & 6 \\ 4 & -1 & 3 \\ 6 & 5 & -4 \end{pmatrix}$$

Symbolické operace s maticemi se dají získat užitím znaménka pro symbolické operace (viz. obr. 3.3). Na obr. 3.3 je znázorněna tvorba inverzní matice symbolicky.

Obrázek 3.3 – Symbolické operace

4. Kapitola

Soustavy rovnic v prostředí MATHCAD lze řešit více způsoby.

4.1 Lineární soustavy rovnic

Soustavy lineárních rovnic lze řešit užitím a znalostí operací s maticemi. Metoda řešení bude předvedena na soustavě 3 lineárních rovnic o 3 neznámých.

Soustava rovnic:

$$3.x - 2.y - z = 12$$

 $2.x - y + 4.z = 0$

x + 2.y - 3.y = 6

$$A := \begin{pmatrix} 1 & 2 & -3 \\ 3 & -2 & -1 \\ 2 & 1 & 4 \end{pmatrix} \qquad X := \begin{pmatrix} x \\ y \\ z \end{pmatrix} \qquad V := \begin{pmatrix} 6 \\ 12 \\ 0 \end{pmatrix}$$

matice konstant vektor neznámých vektor výsledků

A·X = V dle pravidel pak
$$X = A^{-1} \cdot V$$

X := $A^{-1} \cdot V$ $X = \begin{pmatrix} 2.85 \\ -0.9 \\ -1.65 \end{pmatrix}$

Kde: první řádek vektoru X je neznámá x

druhý řádek vektoru X je neznámá y

třetí řádek vektoru X je neznámá z.

Vzhledem k tomu, že vektor má jeden sloupec, stačí k identifikaci prvku jen jedno číslo.

Pro další výpočty je však nutno tyto neznámé znovu nadefinovat.

$$x := X_0$$
 $x = 2.85$
 $y := X_1$ $y = -0.9$
 $z := X_2$ $z = -1.65$

Kontrola správnosti výpočtů:

2. x - y + 4. z = 0

Výhodou této metody je, že v případě soustavy lineárně závislých rovnic program MATHCAD na tuto chybu upozorní.

Je zadána prutová soustava (viz. obr.4.1) zatížená jednou silou Q. Určete síly v jednotlivých prutech i v podporách v bodech A a B.

 $h = 4 \cdot m$ $b = 6 \cdot m$ $Q = 10 \cdot kN$

Soustava rovnovážných rovnic pro jednotlivé styčníky je následují:

$$Ax + S1 = 0 \cdot N$$

$$S3 = 0 \cdot N$$

$$-S1 - S2 \cdot sin(\alpha) = 0 \cdot N$$

$$-S2 \cdot cos(\alpha) - Q = 0 \cdot N$$

$$Bx + S2 \cdot sin(\alpha) = 0 \cdot N$$

$$S3 + By + S2 \cdot cos(\alpha) = 0 \cdot N$$

$$A := \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 & -\sin(\alpha) & 0 \\ 0 & 0 & 0 & 0 & -\cos(\alpha) & 0 \\ 0 & 1 & 0 & 0 & \sin(\alpha) & 0 \\ 0 & 0 & 1 & 0 & \cos(\alpha) & 0 \end{pmatrix} \qquad X := \begin{pmatrix} Ax \\ Bx \\ By \\ S1 \\ S2 \\ S3 \end{pmatrix} \qquad V := \begin{pmatrix} 0 \cdot N \\ 0 \cdot N \end{pmatrix}$$

A je matice konstant, X je vektor neznámých, V je vektor výsledků. Nejde již o bezrozměrné hodnoty. Na pravé i levé straně rovnovážných silových rovnic je jednotka newton [N].

A·X = V
X := A⁻¹·V X =
$$\begin{pmatrix} -1.5 \times 10^4 \\ 1.5 \times 10^4 \\ 1 \times 10^4 \\ 1.5 \times 10^4 \\ -1.803 \times 10^4 \\ 0 \end{pmatrix}$$
N

Reakce ve směru osy y v bodě B jak je: $By := X_3$ $By = 1.5 \times 10^4 N$

4.2 Řešení soustav rovnic pokynem Given - Find

Soustavu rovnic lze řešit v programovém prostředí MATHCAD pokynem Given-Find.

Nevýhodou této varianty řešení je, že získáme výsledek i v případě lineárně závislých rovnic.

Číselná velikost tohoto výsledku bude dána prvním číselným odhadem v zadání (bude vysvětleno dále.

Vlastní postup řešení bude opět vysvětlen na příkladě soustavy rovnic.

$$(3 \cdot x)^{2} - 5y - z = 0$$

x - y + z² = 12
z \cdot x - 5 \cdot y - 6z = 0

Postup je následující:

- První číselný odhad výsledků
- Given
- Soustava rovnice
- Pokyn Find

x := 1	y := 1	z := 1	První číselný odhad výsledku
given			
$(3 \cdot x)^2 - 5y - x - y + z^2 = z \cdot x - 5 \cdot y - 6$	z = 0 12 $\delta z = 0$		Textový blok V textovém bloku nesmí být žádný jiný číselný výpočet nebo hodnota = "tučné" rovnítko
x := V ₀	x = 1.2	55	Číselné výsledky se v souboru V
$y := V_1$	y = 3.5	93	objeví v takovém pořadí, v jakém byly zadány do pokynu V := find(x,y,z)
z := V2	z = -3.	787	

Pro další výpočty je nutno vypočtené číselné hodnoty k neznámým přiřadit.

Výsledkem není "0", ale číslo velmi malé. Výsledek je s dostatečnou přesností.

Řešený příklad

Těleso hmotnosti \mathbf{m}_{t} je taženo silou \mathbf{F} po nakloněné rovině pod úhlem $\boldsymbol{\alpha}$. Síla \mathbf{F} působí ve vzdálenosti \mathbf{H} od nakloněné roviny rovnoběžně s nakloněnou rovinou. Těleso má tvar kvádru a je uloženo na dvou lyžinách ve vzdálenosti **b**. Poloha těžiště je dána souřadnicí **c** a **h** (viz.obr.4.2). Součinitel tření mezi nakloněnou rovinou a tělesem je **f**.

Určete:

1. Maximální sílu F_{max} , kterou můžeme na těleso působit, aby nedošlo k překlopení

2. S jakým maximálním zrychlením a_{max} se pohybuje těleso v okamžiku působení maximální síly F_{max} .

Číselné hodnoty zadání:

 $\alpha = 20 \cdot \text{deg} \qquad \text{mt} = 40 \cdot \text{kg} \qquad f = 0.1 \qquad b = 1 \cdot \text{m} \qquad c = 0.7 \cdot \text{m} \qquad H = 1 \cdot \text{m} \qquad h = 0.6 \cdot \text{m}$

Obrázek 4.2 – Schéma tažení tělesa po nakloněné rovině

Po uvolnění tělesa (viz. obr. 4.2) jsou sestaveny následující rovnovážné rovnice.

$$\begin{split} -mt \cdot a &- mt \cdot g \cdot sin(\alpha) - Tz - Tp + F = 0 \\ Nz + Np &- mt \cdot g \cdot cos(\alpha) = 0 \\ -Nz \cdot b + mt \cdot a \cdot h - F \cdot H + mt \cdot g \cdot sin(\alpha) \cdot h + mt \cdot g \cdot cos(\alpha) \cdot (b - c) = 0 \\ Tz &= Nz \cdot f \\ Tp &= Np \cdot f \end{split}$$

V soustavě 5 rovnic je 6 neznámých. Pro okamžik překlopení však platí, že síla normálová v zadní lyžině (Nz) je rovna 0 a toto je 6. rovnice.

Nz = 0

Výpočet soustavy rovnic:

1. číselné zadání

 $\alpha := 20 \cdot \text{deg} \qquad \text{mt} := 40 \cdot \text{kg} \qquad f := 0.1 \qquad b := 1 \cdot \text{m} \qquad c := 0.7 \cdot \text{m} \qquad H := 1 \cdot \text{m} \qquad h := 0.6 \cdot \text{m}$

2. Odhad výsledků (výsledky jsou fyzikální veličiny, je proto nutné i odhadu přiřadit správnou jednotku.

$$Nz := 1 \cdot N$$
 $Tz := 1 \cdot N$ $Np := 1 \cdot N$ $Tp := 1 \cdot N$ $F := 1 \cdot N$ $a := 1 \cdot \frac{m}{2}$

Následuje číselný blok, otevřený pokynem "Given" a soustava rovnic. V soustavě rovnic musí být na pravé straně správně uvedena jednotka.

Given

```
\begin{split} -mt \cdot a &- mt \cdot g \cdot sin(\alpha) - Tz - Tp + F = 0 \cdot N \\ Tz &= Nz \cdot f \\ Nz + Np &- mt \cdot g \cdot cos(\alpha) = 0 \cdot N \\ Tp &= Np \cdot f \\ -Nz \cdot b &+ mt \cdot a \cdot h - F \cdot H + mt \cdot g \cdot sin(\alpha) \cdot h + mt \cdot g \cdot cos(\alpha) \cdot (b - c) = 0 \cdot N \cdot m \\ Nz &= 0 \cdot N \end{split}
```

V := Find(Np, Tp, Nz, Tz, F, a)

Jednotky sil ve výsledku jsou uvedeny v jednotkách základních.

 $N = kg.m.sec^{-2}$

5. Kapitola

5.kapitola se zabývá symbolickým řešením matematických operací jako jsou kvadratické rovnice, kubické rovnice , derivace apod.

5.1 Řešení kvadratických, kubických rovnic.

Řešení kvadratických či kubických rovnic je naznačeno na obrázku 5.1.

Obrázek 5.1 – Řešení kvadratické rovnice

Postup je následující:

- Rovnice je napsána s "tučným" rovnítkem
- Kurzorem kliknout za neznámou, která je řešena
- Kurzorem kliknout na ikonu Symbolice Variable Solve
- Výsledkem jsou dva kořeny kvadratické rovnice

Stejným způsobem bude řešena rovnice kubická atd.

5.2 Derivace – symbolické a číselné řešení

Derivování funkce lze provést způsobem, který je naznačen na obrázku 5.2.

Postup je následující:

- Ve funkci se označí kurzorem proměnná, dle které se bude derivovat
- Kurzorem kliknout na ikonu Symbolice-Variable-Differentate

QM	lathcad - [mathcad-5.mcd]			
Q 1	File Edit View Insert Format Tools	Symbolics Window He	lp	
] D	- 🛎 🖬 🚑 🖪 🖤 🐰 🖻 🗊	<u>E</u> valuate	•) = 😓 🏶 🗔 100% 💌 [🕐
Var	iables Times New Roman	Expand		<u>U</u> ≡ ≡ ≡ ⊟ ≡ x² ×₂
	A+ [:::] x= j& 🛃 🖾 🚓	Eactor		▼ 🔗 Go
=		<u>C</u> ollect P <u>o</u> lynomial Coefficien	its	ice
:=		<u>V</u> ariable	•	Solve
=		<u>M</u> atrix	•	Substitute
\rightarrow		<u>T</u> ransform	•	Differentiate
•→		Ev <u>a</u> luation Style		Integrate
fx	2			Expand to Series
xf	$5 \cdot x^{2} - 3 \cdot x - 2 = 0$			Convert to Partial Fraction
xfv				
xfy				

Obrázek 5.2 – Derivování

Další možností provedení derivace funkce je užití ikony "Calculus" (viz. obr 5.3).

Obrázek 5.3 – Derivování – Calculus

Postup derivace užitím ikony "Calculus" je uveden na obrázku 5.4. Při řešení symbolickém je nutno užít rovnítka pro symbolické řešení. Označeno v obr. 5.4.

Mathcad - [Untitled:2]		_ _ ×
Sile Edit View Insert Fo	rmat Tools Symbolics Window Help	- 6 ×
🗅 🕶 🖬 🚭 🖪 🖤 🖇 🖻	n 💼 🗠 🖓 🚏 = 🎨 💱 🗖 100% 🔹 🕄	
│ 🖬 A+ [:::] x= ∫╬ 🛃 ଅ 🕫 📚	1	
= Derivace dle x	Derivace dle y	
a) $\frac{d}{dx} \left(5 \cdot x^2 - 3 \cdot x - 2 \right) \rightarrow 10$	$5 \cdot x^2 - 3 \cdot y - 2$	
$ \begin{array}{c} f_x \\ x f \\ xfy \end{array} b) \\ f(x) := 5 \cdot x^2 - 3 \cdot x - 2 \end{array} $	$\frac{\mathrm{d}}{\mathrm{d}y} \left(5 \cdot x^2 - 3 \cdot y - 2 \right) \rightarrow -3$	
$= \frac{d}{dx} f(x) \rightarrow 10 \cdot x - 3$	±	

Obrázek 5.4	– Postup	derivován	í funkce
-------------	----------	-----------	----------

Číselné hodnota derivace funkce se provádí následujícím způsobem:

• Zadání hodnot, ve kterých se bude derivace řešit

$$x := 4$$
 $y := 8$ $z := 2$

• Funkce

$$f(x) := 3 \cdot x^4 + 2 \cdot y^2 + 3 \cdot z$$

$$\frac{d}{dx}f(x) = 768 \qquad \frac{d^3}{dx^3}f(x) = 288$$

$$\frac{d}{dy}\left(3 \cdot x^4 + 2 \cdot y^2 + 3 \cdot z\right) = 32 \quad \text{Derivace podle y}$$

$$\frac{d}{dz}\left(3 \cdot x^4 + 2 \cdot y^2 + 3 \cdot z^2\right) = 12 \quad \text{Derivace podle z}$$

Řešený příklad

Klikový mechanismus je tvořen klikou délky **R** a ojnicí délky **L** (viz. obr. 5.5). Klika se otáčí konstantní úhlovou rychlostí $\boldsymbol{\omega}$. Vzdálenost $\mathbf{x}(\mathbf{t})$ pístu od bodu **A** je funkcí času. Tato vzdálenost popisuje polohu pístu. Úhel $\boldsymbol{\varphi}$ i $\boldsymbol{\psi}$ jsou také funkcí času.

Určete obecně rychlost a zrychlení pístu.

Obrázek 5.5 – Klikový mechanismus

Postup řešení:

- Určení úhlu ψ jako funkce času
- Určení úhlu φ jako funkce času
- Určení vzdálenosti x(t) jako funkce času.
- Určení rychlosti pístu rychlost pístu se určí jako první derivace x(t)
- Určení zrychlení pístu zrychlení pístu je druhou derivací vzdálenosti x(t)

Postup řešení je uveden na obr. 5.6.

Obrázek 5.6 – Řešení rychlosti a zrychlení pístu klikového mechanismu

6. Kapitola

6.kapitola se zabývá integrováním funkce a to symbolicky a číselně.

Symbolické řešení integrování je znázorněno na obrázku 6.1.

Postup je shodný s postupem pro symbolické deriavace

- Ve funkci se označí kurzorem proměnná, dle které se derivovat
- Kurzorem kliknout na ikonu Symbolice-Variable-Integrate

🗬 Mathcad - [mathcad-6.mcd]						
G F	ile Edit View Insert Format Tools	Symbolics Window Help				
ß	- 🖻 🖬 🎒 🖪 🖤 👗 🖻 🖷	Evaluate) = 🗟 🏶 🗖 100% 🔽 😨			
Variables Times New Roman		Expand	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>			
	₩ [!!!] x= ∫⅔ <≦ ⅔ αβ 📚	<u>E</u> actor Collect				
=	I	Polynomial Coefficients				
:=	Integrovani	<u>V</u> ariable	<u>S</u> olve			
=		<u>M</u> atrix	• S <u>u</u> bstitute			
→		<u>T</u> ransform	• <u>D</u> ifferentiate			
•→		Evaluation Style	Integrate			
fx			Expand to Series			
vf			Convert to Partial Fraction			
vfu						
x*y	Integrace podle X	Integrace p	odle Y			
=	S 1	. .				
<	$3x^2 - 3x + 6x$	$2x^2 - 2x + 6x^4$				
>	5x = 2x + 0.8	$3 \cdot x = 2 \cdot x + 0 \cdot \underline{y}$				
_						

Obrázek 6.1 – *Symbolické integrace*

Další možností derivování je užitím ikony "Calculus" (viz obr. 6.2).

Obrázek 6.2 – Symbolické integrace

$$f(x) := 3 \cdot x^{2} - 2 \cdot x + 6 \cdot y \qquad \int f(x) dx \rightarrow x^{3} - x^{2} + 6 \cdot y \cdot x$$
$$\int f(x) dy \rightarrow 3 \cdot x^{2} \cdot y - 2 \cdot y \cdot x + 3 \cdot y^{2}$$
$$\int_{a}^{b} f(x) dx \rightarrow b^{3} - b^{2} + 6 \cdot y \cdot b - a^{3} + a^{2} - 6 \cdot y \cdot a$$

Při symbolických operacích je nutno užít rovnítka pro symbolické operace (viz. obr.5.4.).

Číselné řešení integrálů je shodné s postupem pro derivování (viz. kapitola č. 5).

Určete polohu těžiště homogenní plochy ohraničné funkcemi:

 $f(x) = x^3$, x = a, osou x a osou y.

a = 6

Vyšetřovaná plocha je na obrázku 6.3

Obrázek 6.3 – Vyšetřovaná plocha

Rovnice pro výpočet polohy těžiště jsou následující:

 $f(x) = x^{3}$ $dS = y \cdot dx = y(x) \cdot dx$ Element plochy $xT = \frac{\int_{0}^{S} x \, dS}{\int_{0}^{S} 1 \, dS} = \frac{\int_{0}^{a} x \cdot f(x) \, dx}{\int_{0}^{a} f(x) \, dx}$ Výsledná rovnice pro výpočet x-ové souřadníce těžiště po úpravě a dosazení

$$yt = \frac{\int_{0}^{a} y(x) \cdot y(x) \, dx \cdot \frac{1}{2}}{\int_{0}^{a} y(x) \, dx}$$
 Výsledná rovnice pro výpočet y-ové
souřadnice těžiště po úpravě a dosazení

Číselné řešení v programu MATHCAD:

$$a := 6 \qquad f(x) := x^{3}$$

$$xT := \frac{\int_{0}^{a} x \cdot y(x) dx}{\int_{0}^{a} y(x) dx} \qquad \qquad yT := \frac{\int_{0}^{a} y(x) \cdot y(x) dx \cdot \frac{1}{2}}{\int_{0}^{a} y(x) dx}$$

$$xT = 4.8 \qquad \qquad yT = 61.714$$

7. Kapitola

V této kapitole bude objasněna problematika tvorby grafů funkcí 2-D, 3-D.

7.1 2-D grafy

2-D graf je možno vytvořit jako pole indexované proměnné.

Postup je následující:

- ORIGIN := 0 tento pokyn musí předcházet zadávání
- n := 10 počet hodnot, pro které budou určeny funkční hodnoty grafu
- i := 0 .. n "dvě tečky" nutno zadávat z ikony "MATRIX", určuje počet kroků řešení
- x_i := 3·i² + 2·i + 1
 funkce, jejíž graf bude vykreslen. Index se zadává např. z ikony "MATRIX" (viz. obr.3.2).
- Kliknutím na ikonu "GRAF" se otevře nabídka typu grafů.
- Kliknutím výběr typu grafu
- V grafu na ose x jsou proměnné, na osy y pak vypočtené funkční hodnoty

Veškerý postup a nutné kroky jsou znázorněny na obr. 7.1.

Obrázek 7.1. – Tvorba grafu- var.I

Další možnost tvorby 2-D grafu.

Postup je následující:

- $f(x) := 3 \cdot x^2 + 2 \cdot x + 1$ předepsat funkci, jejíž graf bude tvořen
- x := 0, 1.. 10 stanovení definičního oboru funkce. Rozdíl mezi hodnotou x1 a x2 stanoví krok, se kterým bude vykreslován graf funkce
- Další postup je shodný s postupem uvedeným u předcházející metody (viz. obr.7.2)

Obrázek 7.2. – Tvorba grafu- var.II

Dvojím kliknutím na graf se otevře tabulka "Formatting Currently Selected X-Z plot (viz. obr.7.3). V této tabulce jsou nabídky možných úprav grafu, z nich nejdůležitější a nejčastěji používané jsou:

- Grid line volba mřížky grafu
- Traces typy a barvy křivek grafu
- Labels volba popisu grafu

Obrázek 7.3. – Možnosti úpravy grafu.

🗧 – Řešený příklad

Vykreslete grafy funkcí f1(x1), f2(x2), f3(x3) do jednoho grafu.

Zadané funkce a jejich definiční obory jsou následující:

x1 := 0,1 5	x2 := 5,6 10	x3 := 10,11 15
f1 (x1) := $x1^4 + 2 \cdot x1 - 6$	f2 (x2) := $x2^3 - 2 \cdot x2$	f3 (x3) := $\sqrt{x3} - 2 \cdot x3^2$

Tvorba grafu více funkcí s rozdílnými definičními obory je shodná s postupem popsaným v kapitole 7.1. Graf se tvoří stejným způsobem. Druhou a další funkce, které chceme vykreslit do grafu, se zavedou napsáním čárky za funkci první (viz. obr.7.4).

Fakulta strojní, VŠB-TU Ostrava

Obrázek 7.4 – Tvorba grafu s více funkcemi – Varianta I

Další varianta tvorby grafu více proměnných užitím ikony "PROGRAMMING" viz obr. 7.5. Postup je následující:

- Název funkce s přiřazovacím rovnítkem
- Kliknutí na ikonu "PROGRAMMING
- Předpis první funkce
- Kliknutí "Add line" a předpis druhé funkce
- Dále je tvorba grafu shodná s předcházejícími příklady

Obrázek 7.4 – Tvorba grafu s více funkcemi – Varianta II

V kapitole 5.2. byly řešeny funkce rychlosti a zrychlení pístu klikového mechanismu. Pro shodné zadání vykreslete grafy rychlosti a zrychlení pístu.

Číselné hodnoty zadání:

 $R := 0.4 \cdot m$ $L := 0.8 \cdot m$ $\omega := 0.5 \cdot s^{-1}$ $T := 2 \cdot \frac{\pi}{\omega}$

T....perioda (čas na jednu otáčku)

Výsledné grafy po úpravě v programu MATHCAD (viz. kapitola 7.1) jsou na obr.7.5

Obrázek 7.5 – Průběh rychlosti a zrychlení pístu

8. Kapitola

Tvorba 3-D grafu – bude popsáno na řešeném příkladu

Řešený příklad

Vytvořte 3-D graf zadané funkce.

Postup je následující:

- Zavedení funkce
- Stanovení definičního oboru
- Předpis pro tvorbu matice funkčních hodnot M_{i,j}
- Tvorba grafu z ikony pro tvorbu grafu se vybere 3-D graf (viz. obr. 8.1). Graf lze upravovat otevřením nabídky úprav grafu (dvojím kliknutí do grafu)

 $z(\xi, \eta) := \xi^2 - \eta^2$ $xmin := -3 \quad xmax := 3 \quad nx := 10 \qquad i := 0 \dots \quad nx \quad \Delta x := \frac{xmax - xmin}{nx}$ $ymin := -3 \quad ymax := 3 \quad ny := 10 \qquad j := 0 \dots \quad ny \quad \Delta y := \frac{ymax - ymin}{ny}$

9

9. Kapitola

Vektorový počet a operace s vektory.

Vektor je v prostoru zadáván 3 souřadnicemi

Vektor **A** má tedy 3 složky. $A := \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$

A = 3.742

Velikost vektoru A se určí:

Směrové úhly určující polohu výsledného vektoru k osám x, y a z (viz. obr. 9.1) se určí následujícím způsobem:

Obrázek 9.1 – Určení směrových úhlů

9.1 Skalární součin dvou vektorů

Skalární součin 2 vektorů bude objasněn na jednoduchém příkladu:

Jsou zadány dva vektory A a B.

Skalární součin vektorů **A** a **B** je skalár C. Mezi vektory je běžné znaménko násobení.

Vektorový součin vektorů **A** a **B** je vektor **D**. Znaménko pro vektorový součin je nutno zadávat z ikony "MATRIX" (viz. obr.9.2).

$$B := \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} \qquad A = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

 $C := A \cdot B \qquad C = 32$

$$A = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \qquad B = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$$
$$D := A \times B$$

$$D = \begin{pmatrix} -3 \\ 6 \\ -3 \end{pmatrix}$$

Fakulta strojní, VŠB-TU Ostrava

Matrix	8
[:::] × _n	$\times^{-1} \ \times $
FIND MAY	M [™] mn
\$ • 7 8×7	Þu 🔬

Obrázek 9.2 – Vektorový součin

Řešený příklad

Jsou známy 3 složky vektoru síly **F** (**Fx,Fy,Fz**). Její působiště v bodě **A**. Bod A je zadán souřadnicemi xA, yA a zA (viz. obr. 9.3)

Určete celkovou velikost síly \mathbf{F} , její směrové úhly a moment síly \mathbf{F} k počátku souřadného systému.

 $Fx := 30 \cdot N$ $Fy := 20 \cdot N$ $Fz := 50 \cdot N$ $xA := 2 \cdot m$ $yA := 3 \cdot m$ $zA := 4 \cdot m$

Obrázek 9.3 – Poloha vektoru síly F v prostoru

Velikost vektoru síly **F**: $\mathbf{F} := \begin{pmatrix} \mathbf{F} \mathbf{x} \\ \mathbf{F} \mathbf{y} \\ \mathbf{F} \mathbf{z} \end{pmatrix} |\mathbf{F}| = 61.644 \mathrm{N}$

Určení polohového vektoru **R** a určení jeho velikosti: Velikost vektoru **R** je vzdálenost bodu A od počátku souřadného systému. $R := \begin{pmatrix} xA \\ yA \\ zA \end{pmatrix} \qquad |R| = 5.385 m$ Moment síly **F** k bodu 0 je vektorový součin:

$$MO := R \times F \qquad MO = \begin{pmatrix} 70\\ 20\\ -50 \end{pmatrix} N \cdot m \qquad |MO| = 88.318 N \cdot m$$

10.Kapitola

Některé typy rovnic nelze řešit způsoby uvedenými v kapitolách č.4 a 5. V této kapitole bude na příkladu objasněna další metoda řešení.

10.1 Užití funkce "root"

 $e^{x} = k \cdot x$ - Rovnici nelze řešit způsoby uvedenými v kapitolách č. 4 a 5. Jde vlastně o dvě funkce a kořenem rovnice je hodnota x, kdy je funkční hodnota levé a pravé

Postup řešení je následující:

$$\mathbf{xo} := 0$$
 $\mathbf{x1} := \mathbf{root} \left(\mathbf{e}^{\mathbf{xo}} - \mathbf{k} \cdot \mathbf{xo}, \mathbf{xo} \right)$ $\mathbf{x1} = 0.259$

strany rovnice shodná. To znamená, rovnice bude mít dva kořeny.

xo je první odhad výsledku.

x1 je první kořen rovnice

$$xo := 2$$
 $x2 := root(e^{xo} - k \cdot xo, xo)$ $x2 = 2.543$

xo je první odhad výsledku x2 je druhý kořen rovnice

Kontrola:

$$e^{x^2} - k \cdot x^2 = 2.137 \times 10^{-6}$$

Číselný výsledek je určen s dostatečnou přesností

10.2 Hledání kořene polynomu – užití funkce "polyroot"

Užití funkce "polyroot" bude vysvětleno názorně na příkladu.

Je zadán polynom $\mathbf{a} + \mathbf{b} \cdot \mathbf{x} + \mathbf{c} \cdot \mathbf{x}^2 + \mathbf{d} \cdot \mathbf{x}^3 = 0$

Hodnoty konstant jsou:

a := 5 b := -100 c := 3 d := 2

Z vykreslené funkce polynomu (viz. obr.10.1) je zřejmé, že budou existovat 3 kořeny polynomu, kdy je jeho hodnota rovna nule.

Obrázek 10.1 – Průběh funkce Postup řešení kořenu polynomu v programovém prostředí MATHCAD je následující:

Kontrola řešení:

$\mathbf{x} := \mathbf{x} 1$	$\mathbf{a} + \mathbf{b} \cdot \mathbf{x} + \mathbf{c} \cdot \mathbf{x}^2 + \mathbf{d} \cdot \mathbf{x}^3 = 2.274 \times 10^{-13}$
x := x2	$\mathbf{a} + \mathbf{b} \cdot \mathbf{x} + \mathbf{c} \cdot \mathbf{x}^2 + \mathbf{d} \cdot \mathbf{x}^3 = 0$
x := x3	$\mathbf{a} + \mathbf{b} \cdot \mathbf{x} + \mathbf{c} \cdot \mathbf{x}^2 + \mathbf{d} \cdot \mathbf{x}^3 = -5.684 \times 10^{-14}$
11.Kapitola	

Příklad řešení diferenciální rovnice 2. řádu numerickou metodou bude objasněno na příkladu pohybu střely v prostředí, které klade odpor.

Zadání příkladu:

Z bodu **O** byla vystřelena střela s počáteční rychlostí \mathbf{v}_0 pod úhlem ϕ_0 . Proti pohybu střely působí síla **Fb**, která je funkcí rychlosti **Fb= b*v**². Určete maximální dolet střely. Hmotnost střely je \mathbf{m}_t .

Číselné hodnoty zadání:

vo :=
$$800 \cdot m \cdot sec^{-1}$$
 $\phi o := 40 \cdot deg$
mt := $0.1 \cdot kg$ $b := 5 \cdot 10^{-6} \cdot N \cdot sec^{2} \cdot m^{-2}$ $g := 9.81 \cdot m \cdot sec^{-2}$

Schéma zadání (viz. obr. 11.

Obrázek 11.1 – Schéma zadání

Rychlost střely **v** je vektor a v každém okamžiku tento vektor můžeme rozložit do dvou směrů (jde o úlohu rovinnou).

$$vx = v \cdot cos(\phi)$$
 $vy = v \cdot sin(\phi)$ $v = \sqrt{vx^2 + vy^2}$

Pro úhel φ platí závislosti:

$$\cos(\phi) = \frac{vx}{\sqrt{vx^2 + vy^2}} \qquad \sin(\phi) = \frac{vy}{\sqrt{vx^2 + vy^2}}$$

Odpor prostředí působící proti pohybu střely ve směru osy x:

$$Fbx = b \cdot v^2 \cdot \cos\left(\phi\right) = -b \cdot \left(\sqrt{vx^2 + vy^2}\right)^2 \cdot \frac{vx}{\sqrt{vx^2 + vy^2}} = -b \cdot vx \cdot \sqrt{vx^2 + vy^2}$$

Odpor prostředí působící proti pohybu střely ve směru osy y:

$$Fby = -b \cdot v^{2} \cdot \sin(\phi) = -b \cdot \left(\sqrt{vx^{2} + vy^{2}}\right)^{2} \cdot \frac{vy}{\sqrt{vx^{2} + vy^{2}}} = -b \cdot vy \cdot \sqrt{vx^{2} + vy^{2}}$$

Pohybová rovnice ve směru osy x:

$$mt \cdot ax = -Fbx = -b \cdot v^2 \cdot cos(\phi) = -b \cdot vx \cdot \sqrt{vx^2 + vy^2}$$

Zrychlení ax ve směru osy x:

ax (vx, vy) :=
$$\frac{-b}{mt} \cdot vx \cdot \sqrt{vx^2 + vy^2}$$

Pohybová rovnice ve směru osy y:

$$mt \cdot ay = -g - Fby = -g \cdot mt - b \cdot vy \cdot \sqrt{vx^2 + vy^2}$$

Zrychlení **ay** ve směru osy y:

ay (vx, vy) :=
$$-g - \frac{b}{mt} \cdot \left(vy \cdot \sqrt{vx^2 + vy^2}\right)$$

Řešení Eulerovou metodou numerické integrace

 $\begin{array}{l} \operatorname{vox} := \operatorname{vo} \cdot \cos(\phi o) \\ \operatorname{voy} := \operatorname{vo} \cdot \sin(\phi o) \\ n := 10000 \quad \operatorname{Tc} := 75 \cdot \operatorname{sec} \quad \Delta t := \frac{\operatorname{Tc}}{n} \quad \Delta t = 7.5 \times 10^{-3} \, \mathrm{s} \\ i := 0 \dots n \quad x_i := 0 \cdot \mathrm{m} \quad y_i := 0 \cdot \mathrm{m} \quad \operatorname{vx}_i := 0 \cdot \mathrm{m} \cdot \operatorname{sec}^{-1} \quad \operatorname{vy}_i := 0 \cdot \mathrm{m} \cdot \operatorname{sec}^{-1} \quad t_i := i \cdot \Delta t \\ \operatorname{vx}_0 := \operatorname{vox} \quad \operatorname{vy}_0 := \operatorname{voy} \\ i := 1 \dots n \\ n \dots \text{počet krok}^{\hat{u}} \\ \operatorname{Tc} \dots \operatorname{celkov}^{\hat{u}} \operatorname{doba} \check{r} e\check{s} eni \\ \Delta t \dots \operatorname{doba} \operatorname{jednoho} \operatorname{kroku} \\ \operatorname{vx}_0 \dots \operatorname{poč}^{\hat{c}} \operatorname{dečn} i \operatorname{rychlost} \operatorname{ve} \operatorname{sm \check{e} ru} \operatorname{osy} x \\ \operatorname{vy}_0 \dots \operatorname{poč}^{\hat{c}} \operatorname{dečn} i \operatorname{rychlost} \operatorname{ve} \operatorname{sm \check{e} ru} \operatorname{osy} y \end{array}$

$$\begin{pmatrix} \mathbf{x}_{i} \\ \mathbf{y}_{i} \\ \mathbf{v}_{x_{i}} \\ \mathbf{v}_{y_{i}} \end{pmatrix} := \begin{pmatrix} \mathbf{x}_{i-1} + \mathbf{v}_{x_{i-1}} \cdot \Delta t + 0.5 \cdot ax(\mathbf{v}_{x_{i-1}}, \mathbf{v}_{y_{i-1}}) \cdot \Delta t^{2} \\ \mathbf{y}_{i-1} + \mathbf{v}_{y_{i-1}} \cdot \Delta t + 0.5 \cdot ay(\mathbf{v}_{x_{i-1}}, \mathbf{v}_{y_{i-1}}) \cdot \Delta t^{2} \\ \mathbf{v}_{x_{i-1}} + ax(\mathbf{v}_{x_{i-1}}, \mathbf{v}_{y_{i-1}}) \cdot \Delta t \\ \mathbf{v}_{y_{i-1}} + ay(\mathbf{v}_{x_{i-1}}, \mathbf{v}_{y_{i-1}}) \cdot \Delta t \end{pmatrix}$$

i := 0 .. n

Výsledkem řešení je graf – trajektorie střely (viz.obr.11.2), průběh rychlosti střely ve směru osy x (viz. obr.11.3) a průběh rychlosti střely ve směru osy y (viz. obr.11.4)

Obrázek 11.2 – Trajektorie střely

Obrázek 11.3 – Průběh rychlosti střely ve směru osy x

Obrázek 11.4 – Průběh rychlosti střely ve směru osy y

MATHCAD – User Guide